查找矩形的边界集

Find bounding set of rectangles

本文关键字:边界 查找      更新时间:2023-10-16

我有一个std::vectorrectangle's。类的定义非常简单:

class rectangle
{
public:
rectangle();
rectangle(int leftX, int topY, int width, int height);
rectangle(const rectangle &other);
int x() const;
int y() const;
int width() const;
int height() const;
// Returns the bounding rectangle of this rectangle and the given rectangle.
rectangle united(const rectangle &r) const;
rectangle intersected(const rectangle &r) const;
// Returns true if rectangle intersects with given rectagle else false.
bool intersects(const rectangle &r) const;
};

对于每个矩形,我想看看是否与向量中的另一个矩形相交,然后"联合"它们(找到边界矩形(如果它们相交。

我很想看看是否有办法使用<algorithm>中的函数来对一系列矩形执行搜索/组合。有人能就可能的解决方案提出建议吗?寻找简洁而不需要重新设计轮子的东西。

[编辑:]我应该提到,我已经实施了"intersects(("answers"united"。

我的最终目标是实现一个在我的矩形范围内工作的函数,如下所示:

/// For each rectangle in the vector it test if it intersects with another and return the set of united rectangles. 
/// param v A set of rectangles
/// return A united set of rectangles.
std::vector<rectangle> test_intersect_and_unite(const std::vector<rectangle> &v)
{
std::vector<rectangle> united;
// ...
return united;
}

我可能会处理不到20个矩形。

我的问题似乎比答案更令人困惑。也许我不太善于解释自己。尽管如此,这是我(天真的(解决方案。

///////////////////////////////////////////////////////////////////////////
template<template <typename, typename = std::allocator<rectangle>> class Container>
Container<rectangle> test_intersect_and_unite(const Container<rectangle> &v)
{
Container<rectangle> vTemp{v};
for (std::size_t i = 0; i < vTemp.size(); ++i)
{
for (std::size_t j = 0; j < vTemp.size(); ++j)
{
if (i == j) { continue; }
if (vTemp[i].intersects(vTemp[j]))
{
vTemp[i]  = vTemp[i].united(vTemp[j]);
vTemp.erase(vTemp.begin() + j);
if (j < i) { --i; }
--j;
continue;
}
}
}
return vTemp;
}

一些简单的单元测试:

////////////////////////////////////////////////////////////////////////////////
class rectangle_utils_test : public testing::Test
{
public:
rectangle_utils_test() = default;
~rectangle_utils_test() override = default;
};

//////////////////////////////////////////////////////////////////////////
TEST_F(rectangle_utils_test, test_intersect_and_unite)
{
// TODO: This unit test makes some naive assumptions about ordering.
// TODO: Test with negative values.
{
std::vector<rectangle> vArg = {{10, 10, 10, 10}, {15, 15, 10, 10}};
std::vector<rectangle> v = test_intersect_and_unite(vArg);
ASSERT_EQ(v.size(), 1);
ASSERT_EQ(v[0], rectangle(10, 10, 15, 15));
}
{
std::vector<rectangle> vArg = {{10, 10, 10, 10}, {21, 21, 10, 10}};
std::vector<rectangle> v = test_intersect_and_unite(vArg);
ASSERT_EQ(v.size(), 2);
ASSERT_EQ(v[0], rectangle(10, 10, 10, 10));
ASSERT_EQ(v[1], rectangle(21, 21, 10, 10));
}
{
std::vector<rectangle> vArg = {{10, 10, 10, 10},
{15, 15, 10, 10},
{60, 60, 10, 10},
{5,  5,  10, 10},
{0,  0,  10, 10},
{40, 40, 10, 10}};
std::vector<rectangle> v = test_intersect_and_unite(vArg);
ASSERT_EQ(v.size(), 3);
ASSERT_EQ(v[0], rectangle(0, 0, 25, 25));
ASSERT_EQ(v[1], rectangle(60, 60, 10, 10));
ASSERT_EQ(v[2], rectangle(40, 40, 10, 10));
}
// Most interesting test case.
{
std::vector<rectangle> vArg = {{0,  0,  10, 10},
{20, 20, 10, 10},
{10, 10, 10, 10},
{5,  5,  10, 10},
{15, 15, 10, 10},
{40, 40, 10, 10}};
std::vector<rectangle> v = test_intersect_and_unite(vArg);
ASSERT_EQ(v.size(), 2);
ASSERT_EQ(v[0], rectangle(0, 0, 30, 30));
ASSERT_EQ(v[1], rectangle(40, 40, 10, 10));
}
}