std::tuple_cat替换失败

std::tuple_cat substitution failure

本文关键字:替换 失败 cat tuple std      更新时间:2023-10-16

我使用std::tuple_cat将参数列表的子集选择为元组,如下所示:

template <class...>
struct odds;
template <class T1>
struct odds<T1>
{
typedef std::tuple<T1> type;
static type value(T1&& t1)
{
return std::make_tuple(std::forward<T1>(t1));
}
};
template <class T1, class T2>
struct odds<T1, T2>
{
typedef std::tuple<T1> type;
static type value(T1&& t1, T2&&)
{
return std::make_tuple(std::forward<T1>(t1));
}
};
template <class T1, class T2, class... TTail> 
struct odds<T1, T2, TTail...>
{
typedef decltype(std::tuple_cat(T1(), typename odds<TTail...>::type())) type; // L32
static type value(T1&& t1, T2&&, TTail&&... rest)
{
return std::tuple_cat(std::forward<T1>(t1), odds<TTail...>::value(std::forward<TTail>(rest)...)); // L35
}
};

,以下为测试用例:

// assume <tuple>, <utility> are included at top of file
template <class... T>
auto foo(T... x) -> typename odds<T...>::type
{
return odds<T...>::value(x...);
//...
}       
int main() {
auto bar = foo(5, true, 6, false); // L46
auto baz = odds<int, bool, int, bool>::value(5, true, 6, false); // L47
// bar, baz should be tuple<int,int> with value { 5, 6 }
}

然而,clang-3.1和gcc-4.7.2:中都出现了模板推导问题

Clang输出:

test.cc:32:19: error: no matching function for call to 'tuple_cat'
typedef decltype(std::tuple_cat(T1(), typename odds<TTail...>::type())) type;
^~~~~~~~~~~~~~
test.cc:40:30: note: in instantiation of template class 'odds<int, bool, int, bool>' requested here
auto foo(T... x) -> typename odds<T...>::type
^
test.cc:40:6: note: while substituting deduced template arguments into function template 'foo' [with T = <int, bool, int, bool>]
auto foo(T... x) -> typename odds<T...>::type
^
/usr/include/c++/v1/tuple:1063:1: note: candidate template ignored: substitution failure [with _Tuple0 = int, _Tuples = <std::__1::tuple<int>>]
tuple_cat(_Tuple0&& __t0, _Tuples&&... __tpls)
^
/usr/include/c++/v1/tuple:987:1: note: candidate function not viable: requires 0 arguments, but 2 were provided
tuple_cat()
^
test.cc:46:13: error: no matching function for call to 'foo'
auto bar = foo(5, true, 6, false);
^~~
test.cc:40:6: note: candidate template ignored: substitution failure [with T = <int, bool, int, bool>]
auto foo(T... x) -> typename odds<T...>::type
^
test.cc:35:10: error: no matching function for call to 'tuple_cat'
return std::tuple_cat(std::forward<T1>(t1), odds<TTail...>::value(std::forward<TTail>(rest)...));
^~~~~~~~~~~~~~
test.cc:47:41: note: in instantiation of member function 'odds<int, bool, int, bool>::value' requested here
auto baz = odds<int, bool, int, bool>::value(5,true,6,false);
^
/usr/include/c++/v1/tuple:1063:1: note: candidate template ignored: substitution failure [with _Tuple0 = int, _Tuples = <std::__1::tuple<int>>]
tuple_cat(_Tuple0&& __t0, _Tuples&&... __tpls)
^
/usr/include/c++/v1/tuple:987:1: note: candidate function not viable: requires 0 arguments, but 2 were provided
tuple_cat()
^
3 errors generated.

Gcc输出:

test.cc: In instantiation of ‘struct odds<int, bool, int, bool>’:
test.cc:40:6:   required by substitution of ‘template<class ... T> typename odds<T ...>::type foo(T ...) [with T = {int, bool, int, bool}]’
test.cc:46:34:   required from here
test.cc:32:74: error: no matching function for call to ‘tuple_cat(int, odds<int, bool>::type)’
test.cc:32:74: note: candidate is:
In file included from test.cc:1:0:
/usr/lib/gcc/x86_64-pc-linux-gnu/4.7.2/include/g++-v4/tuple:1027:5: note: template<class ... _Tpls, class> constexpr typename std::__tuple_cat_result<_Tpls ...>::__type std::tuple_cat(_Tpls&& ...)
/usr/lib/gcc/x86_64-pc-linux-gnu/4.7.2/include/g++-v4/tuple:1027:5: note:   template argument deduction/substitution failed:
/usr/lib/gcc/x86_64-pc-linux-gnu/4.7.2/include/g++-v4/tuple:1024:31: error: no type named ‘type’ in ‘struct std::enable_if<false, void>’
test.cc: In function ‘int main()’:
test.cc:46:34: error: no matching function for call to ‘foo(int, bool, int, bool)’
test.cc:46:34: note: candidate is:
test.cc:40:6: note: template<class ... T> typename odds<T ...>::type foo(T ...)
test.cc:40:6: note:   substitution of deduced template arguments resulted in errors seen above
test.cc:46:34: error: unable to deduce ‘auto’ from ‘<expression error>’
test.cc:47:13: error: ‘value’ is not a member of ‘odds<int, bool, int, bool>’
test.cc:47:61: error: unable to deduce ‘auto’ from ‘<expression error>’

Gcc在这里更有帮助,尤其是在错误的情况下

test.cc:32:74: error: no matching function for call to ‘tuple_cat(int, odds<int, bool>::type)’

目标是调用一个函数,该函数递归地拆包参数,将所选内容收集到一个收集元组中,并返回它。为了以平面方式累积它,我使用std::tuple_cat()来压平递归尾部元组,添加一个头,然后返回元组。使用转发是为了在递归过程中不删除引用限定符。

在代码的后面,将对生成的元组进行解包,以调用不同的变元函数,但这超出了此错误的范围。

很明显,我在某个地方遗漏了一些微妙但关键的细节,但我发现很难找到根本问题。

tuple_cat的参数必须是元组(或支持std::tuple_sizestd::tuple_elementAPI的"类似元组"的东西,如std::pairstd::array),但从错误消息来看,您似乎是用非元组类型调用它。要做到这一点,你可能需要这样的东西:

std::tuple_cat(std::make_tuple(a_non_tuple), a_tuple, another_tuple);

这将第一个参数转换为tuple<decltype(a_non_tuple)>,以便它可以与其他元组连接。

std::tuple<T1, std::tuple<T2, std::tuple<T3, ...>>>连接到std::tuple<T1, T2, T3, ...>

这不是"串联"。我认为正确的说法是"扁平化"。

我真的不确定你在尝试什么,因为你还没有提供一个完整的例子。你用std::tuple<T1, std::tuple<T2, std::tuple<T3, ...>>>这样的参数调用foo吗?

这不会起作用,因为foo将把T推导为std::tuple<T1, std::tuple<T2, std::tuple<T3, ...>>>,并实例化odds<T1>专门化,这只是将foo的参数封装在另一个元组中!

我不知道您是否对此感兴趣,因为这是一种替代实现,而不是您问题的答案。我认为,像这样使用tuple_cat最终会在运行时进行大量的移动/复制,尽管编译器可能会为琐碎的类型避免这些操作。无论如何,这似乎是一个有趣的TMP问题。

这就是我想到的(可能过于冗长);它肯定需要一些清理(我的clang版本——几周前的trunk——在试图编译它时断言)。

有趣的递归位在Skip中,它使用前一个元组作为模式(实际上是count)来构造下一个元组;您可以看到,最后,Odds是如何使用SkipHelper传递双参数模式来设置初始调用的。(这部分肯定需要一些工作,也许使用数字会更容易):

namespace skip_args {
namespace detail {
// We use Tuple as a kind of generic typelist.
template<typename ...T>
using Tuple = std::tuple<T...>;
// Utility "functions"
// Pusher<T, Tuple<U...> >::type = Tuple<T, U...>
template<typename A, typename B> struct Pusher;
template<typename T, typename ...U> struct Pusher<T, Tuple<U...>> {
using type = Tuple<T, U...>;
};
template<typename A, typename B>
using push = typename Pusher<A, B>::type;
// Skip is an intermediate used to skip over ignored elements.
// To allow recursion, we declare the general form first.
// All three arguments are Tuples.
template<typename Next, typename Rest, typename This> struct Skip;
// Node is actually used to store some data item. It also inherits from the next
// following Node (if there is one) so that we end up with an inheritance chain.
// (That's the part similar to libstdc++ tuples; it makes the layout the same,
// too, as long as there's no EBO to deal with, because we don't bother here.)
template<typename Rest, typename ...This> struct Node;
template<typename ...R_, typename T, typename ...T_>
struct Node<Tuple<R_...>, T, T_...>
: Skip<Tuple<>, Tuple<R_...>, Tuple<T, T_...>>::type {
using self = Node<Tuple<R_...>, T, T_...>;
using next = typename Skip<Tuple<>, Tuple<R_...>, Tuple<T, T_...>>::type;
// Recursive construction of node types
using nodes = push<self, typename next::nodes>;
using value_type = T;
// The constructor takes all the arguments, uses the first one, skips some,
// and passes the rest to the next node.
constexpr Node<Tuple<R_...>, T, T_...>(T&& t, T_&&...t_, R_&&...r_)
: next(std::forward<R_>(r_)...), value(std::forward<T>(t)) {
}
T&& value;
};
// Base:
template<>
struct Node<Tuple<>> {
using nodes = Tuple<>;
constexpr Node<Tuple<>>() {}
};
// Skip (N...) (R R...) (T T...) => Skip (N... R) (R...) (T...)
// In other words, it drops elements from the third tuple, and for each one it
// moves an element from the second tuple to the first tuple. If it runs out of
// the third tuple, it "returns" a new Node. If it runs out of the second tuple,
// then we're done, but to satisfy the node requirements, it actually needs to
// declare a constructor (which drops all its arguments)
// General case:
template<typename ...N_, typename R, typename ...R_, typename T, typename ...T_>
struct Skip<Tuple<N_...>, Tuple<R, R_...>, Tuple<T, T_...>>
: Skip<Tuple<N_..., R>, Tuple<R_...>, Tuple<T_...>> {
};
// Ran out of pattern
template<typename ...N_, typename R_, typename T_>
struct Skip<Tuple<N_...>, R_, T_> {
using type = Node<R_, N_...>;
using nodes = typename type::nodes;
};
template<typename T> struct TupleTyper;
template<typename ...T> struct TupleTyper<Tuple<T...>> {
using type = Tuple<typename T::value_type...>;
};
template<typename A, typename B, typename C> struct TupleMaker;
template<typename Tup, typename H, typename ...T>
struct TupleMaker<Tup, H, Tuple<T...>> {
Tup operator()(H&& helper) {
return Tup(static_cast<T&>(helper).value...);
}
};
template<typename N> struct SkipHelper {
using tuple_type = typename TupleTyper<typename N::nodes>::type;
template<typename ...U>
tuple_type operator()(U&& ...u) {
return TupleMaker<tuple_type, N, typename N::nodes>()(N(std::forward<U>(u)...));
}
};
} // namespace detail
template<typename ...T> struct Odds;
template<typename T1, typename T2, typename ...T_>
struct Odds<T1, T2, T_...>
: detail::SkipHelper<detail::Node<detail::Tuple<T_...>, T1, T2>> {
};
template<typename T1>
struct Odds<T1> : detail::SkipHelper<detail::Node<detail::Tuple<>, T1>> {
};
// tuple_from_odds takes any number of arguments,
// and returns a tuple of the odd numbered ones.
template<typename...T> auto tuple_from_odds(T&&...t)
-> typename Odds<T...>::tuple_type {
return Odds<T...>()(std::forward<T>(t)...);
}
} // namespace skip_args