可以将操纵器传递给函数吗

Can you pass a manipulator to a function?

本文关键字:函数 操纵      更新时间:2023-10-16

我想把一个操纵器列表传递给一个函数,如下所示:

void print(const vector<std::smanip>& manips) {
  // ...
  for (auto m : manips)
    cout << m;
  // ...
}

理想情况下,它会被这样的代码调用:

some_object.print({std::fixed, std::setprecision(2)}));

g++4.7.0表示:

error: ‘std::smanip’ has not been declared

显然,标准中并没有真正定义smanip,C++11编译器也不需要为操纵器类型提供明确的名称。我试图通过从一个已知的操纵器中吸取信息来声明一种类型,比如:

typedef decltype(std::fixed) manip;

这打开了大量新的错误消息,包括以下消息:

error: ‘const _Tp* __gnu_cxx::new_allocator< <template-parameter-1-1> 
>::address(__gnu_cxx::new_allocator< <template-parameter-1-1> >::const_reference)
const [with _Tp = std::ios_base&(std::ios_base&); __gnu_cxx::new_allocator<
<template-parameter-1-1> >::const_pointer = std::ios_base& (*)(std::ios_base&);
__gnu_cxx::new_allocator< <template-parameter-1-1> >::const_reference =
std::ios_base& (&)(std::ios_base&)]’ cannot be overloaded

我应该现在就放弃,还是有办法做到这一点?

输出操纵器只是为某些basic_ostream实例化定义os << m的任何类型。操纵器可以是一个函数(受制于basic_ostreamoperator<<重载),但它也可以是定义自己的operator<<的任何类型。因此,我们需要执行类型擦除以捕获用于适当的basic_ostream实例化的operator<<;最简单的方法是使用std::function和lambda:

#include <iostream>
#include <iomanip>
#include <functional>
#include <vector>
template<typename S>
struct out_manipulator: public std::function<S &(S &)> {
   template<typename T> out_manipulator(T &&t): std::function<S &(S &)>(
      [=](S &i) -> S &{ return i << t; }) {}
   template<typename T> out_manipulator(T *t): std::function<S &(S &)>(
      [=](S &i) -> S &{ return i << t; }) {}    // for g++
   template<typename U> friend U &operator<<(U &u, out_manipulator &a) {
      return static_cast<U &>(a(u));
   }
};
void print(const std::vector<out_manipulator<std::ostream>> &manips) {
   for (auto m: manips)
      std::cout << m;
}
int main() {
   print({std::fixed, std::setprecision(2)});
   std::cout << 3.14159;
}

您的操纵器可以有几乎任意的类型,因此您必须使用模板来处理它们。为了使用固定类型的指针或引用来访问它们,您必须为所有这些模板使用一个公共基类。这种多态性只适用于指针和引用,但您可能需要值语义,尤其是将它们存储在容器中。因此,最简单的方法是让shared_ptr负责内存管理,并使用另一个类向用户隐藏所有丑陋的细节。

结果可能是这样的:

#include <memory>
#include <iostream>
// an abstract class to provide a common interface to all manipulators
class abstract_manip {
public:
  virtual ~abstract_manip() { }
  virtual void apply(std::ostream& out) const = 0;
};
// a wrapper template to let arbitrary manipulators follow that interface
template<typename M> class concrete_manip : public abstract_manip {
public:
  concrete_manip(const M& manip) : _manip(manip) { }
  void apply(std::ostream& out) const { out << _manip; }
private:
  M _manip;
};
// a class to hide the memory management required for polymorphism
class smanip {
public:
  template<typename M> smanip(const M& manip)
    : _manip(new concrete_manip<M>(manip)) { }
  template<typename R, typename A> smanip(R (&manip)(A))
    : _manip(new concrete_manip<R (*)(A)>(&manip)) { }
  void apply(std::ostream& out) const { _manip->apply(out); }
private:
  std::shared_ptr<abstract_manip> _manip;
};
inline std::ostream& operator<<(std::ostream& out, const smanip& manip) {
  manip.apply(out);
  return out;
}

这样,您的代码在对名称空间进行一些轻微更改后即可工作:

void print(const std::vector<smanip>& manips) {
  for (auto m : manips)
    std::cout << m;
}
int main(int argc, const char** argv) {
  print({std::fixed, std::setprecision(2)});
}

由于操纵器是函数,这取决于它们的签名。这意味着,您可以创建具有相同签名的操纵器向量。

例如:

#include <iomanip>
#include <vector>
#include <iostream>
typedef std::ios_base& (*manipF)( std::ios_base& );
std::vector< manipF > getManipulators()
{
    std::vector< manipF > m =
    {
        std::showpos,
        std::boolalpha
    };
    return m;
}
int main()
{
  auto m = getManipulators();
  for ( auto& it : m )
  {
    std::cout<<it;
  }
  std::cout<<"hi " << true << 5.55555f << std::endl;
}

另一种选择是使用lambdas:

#include <iomanip>
#include <vector>
#include <iostream>
#include <functional>
typedef std::function< std::ios_base& ( std::ios_base& ) > manipF;
std::vector< manipF > getManipulators()
{
    std::vector< manipF > m =
    {
        std::showpos,
        std::boolalpha,
        [] ( std::ios_base& )->std::ios_base&
        {
          std::cout << std::setprecision( 2 );
          return std::cout;
        }
    };
    return m;
}
int main()
{
  auto m = getManipulators();
  for ( auto& it : m )
  {
    it(std::cout);
  }
  std::cout<<"hi " << true << 5.55555f << std::endl;
}

标准C++17解决方案,可能基于std::tuple。这是P.O.C.

int main()
{
// quick p.o.c.
auto ios_mask_keeper = [&](auto mask) {
    // keep tuple here
    static auto mask_ = mask;
    return mask_;
};
// make required ios mask and keep it
auto the_tuple = ios_mask_keeper(
    // please note we can mix ios formaters and iomanip-ulators
    std::make_tuple(std::boolalpha, std::fixed, std::setprecision(2) ) 
);
// apply iomanip's stored in a tuple
std::apply([&](auto & ...x) 
{
    // c++17 fold 
    (std::cout << ... << x);
}, the_tuple);
return 0;

}

可以将元组保存在类中,等等。。适用于MSVC CL编译器19.14.26431.0版本和使用clang的强制Wand Box。