为什么 std::vector<bool> 更快?

Why is std::vector<bool> faster?

本文关键字:gt 更快 bool lt std vector 为什么      更新时间:2023-10-16

当我实现Eratosthenes的筛选时,我遇到了std::vector<bool>的问题:无法访问原始数据。

因此,我决定使用一个自定义的极简主义实现,在那里我可以访问数据指针。

#ifndef LIB_BITS_T_H
#define LIB_BITS_T_H
#include <algorithm>
template <typename B>
class bits_t{
public:
    typedef B block_t;
    static const size_t block_size = sizeof(block_t) * 8;
    block_t* data;
    size_t size;
    size_t blocks;
    class bit_ref{
    public:
        block_t* const block;
        const block_t mask;
        bit_ref(block_t& block, const block_t mask) noexcept : block(&block), mask(mask){}
        inline void operator=(bool v) const noexcept{
            if(v) *block |= mask;
            else  *block &= ~mask;
        }
        inline operator bool() const noexcept{
            return (bool)(*block & mask);
        }
    };

    bits_t() noexcept : data(nullptr){}
    void resize(const size_t n, const bool v) noexcept{
        block_t fill = v ? ~block_t(0) : block_t(0);
        size = n;
        blocks = (n + block_size - 1) / block_size;
        data = new block_t[blocks];
        std::fill(data, data + blocks, fill);
    }
    inline block_t& block_at_index(const size_t i) const noexcept{
        return data[i / block_size];
    }
    inline size_t index_in_block(const size_t i) const noexcept{
        return i % block_size;
    }
    inline bit_ref operator[](const size_t i) noexcept{
        return bit_ref(block_at_index(i), block_t(1) << index_in_block(i));
    }
    ~bits_t(){
        delete[] data;
    }
};
#endif // LIB_BITS_T_H

该代码与/usr/include/c++/4.7/bits/stl_bvector.h中的代码几乎相同,但速度较慢。

我尝试了一个优化,

#ifndef LIB_BITS_T_H
#define LIB_BITS_T_H
#include <algorithm>
template <typename B>
class bits_t{
const B mask[64] = {
    0b0000000000000000000000000000000000000000000000000000000000000001,
    0b0000000000000000000000000000000000000000000000000000000000000010,
    0b0000000000000000000000000000000000000000000000000000000000000100,
    0b0000000000000000000000000000000000000000000000000000000000001000,
    0b0000000000000000000000000000000000000000000000000000000000010000,
    0b0000000000000000000000000000000000000000000000000000000000100000,
    0b0000000000000000000000000000000000000000000000000000000001000000,
    0b0000000000000000000000000000000000000000000000000000000010000000,
    0b0000000000000000000000000000000000000000000000000000000100000000,
    0b0000000000000000000000000000000000000000000000000000001000000000,
    0b0000000000000000000000000000000000000000000000000000010000000000,
    0b0000000000000000000000000000000000000000000000000000100000000000,
    0b0000000000000000000000000000000000000000000000000001000000000000,
    0b0000000000000000000000000000000000000000000000000010000000000000,
    0b0000000000000000000000000000000000000000000000000100000000000000,
    0b0000000000000000000000000000000000000000000000001000000000000000,
    0b0000000000000000000000000000000000000000000000010000000000000000,
    0b0000000000000000000000000000000000000000000000100000000000000000,
    0b0000000000000000000000000000000000000000000001000000000000000000,
    0b0000000000000000000000000000000000000000000010000000000000000000,
    0b0000000000000000000000000000000000000000000100000000000000000000,
    0b0000000000000000000000000000000000000000001000000000000000000000,
    0b0000000000000000000000000000000000000000010000000000000000000000,
    0b0000000000000000000000000000000000000000100000000000000000000000,
    0b0000000000000000000000000000000000000001000000000000000000000000,
    0b0000000000000000000000000000000000000010000000000000000000000000,
    0b0000000000000000000000000000000000000100000000000000000000000000,
    0b0000000000000000000000000000000000001000000000000000000000000000,
    0b0000000000000000000000000000000000010000000000000000000000000000,
    0b0000000000000000000000000000000000100000000000000000000000000000,
    0b0000000000000000000000000000000001000000000000000000000000000000,
    0b0000000000000000000000000000000010000000000000000000000000000000,
    0b0000000000000000000000000000000100000000000000000000000000000000,
    0b0000000000000000000000000000001000000000000000000000000000000000,
    0b0000000000000000000000000000010000000000000000000000000000000000,
    0b0000000000000000000000000000100000000000000000000000000000000000,
    0b0000000000000000000000000001000000000000000000000000000000000000,
    0b0000000000000000000000000010000000000000000000000000000000000000,
    0b0000000000000000000000000100000000000000000000000000000000000000,
    0b0000000000000000000000001000000000000000000000000000000000000000,
    0b0000000000000000000000010000000000000000000000000000000000000000,
    0b0000000000000000000000100000000000000000000000000000000000000000,
    0b0000000000000000000001000000000000000000000000000000000000000000,
    0b0000000000000000000010000000000000000000000000000000000000000000,
    0b0000000000000000000100000000000000000000000000000000000000000000,
    0b0000000000000000001000000000000000000000000000000000000000000000,
    0b0000000000000000010000000000000000000000000000000000000000000000,
    0b0000000000000000100000000000000000000000000000000000000000000000,
    0b0000000000000001000000000000000000000000000000000000000000000000,
    0b0000000000000010000000000000000000000000000000000000000000000000,
    0b0000000000000100000000000000000000000000000000000000000000000000,
    0b0000000000001000000000000000000000000000000000000000000000000000,
    0b0000000000010000000000000000000000000000000000000000000000000000,
    0b0000000000100000000000000000000000000000000000000000000000000000,
    0b0000000001000000000000000000000000000000000000000000000000000000,
    0b0000000010000000000000000000000000000000000000000000000000000000,
    0b0000000100000000000000000000000000000000000000000000000000000000,
    0b0000001000000000000000000000000000000000000000000000000000000000,
    0b0000010000000000000000000000000000000000000000000000000000000000,
    0b0000100000000000000000000000000000000000000000000000000000000000,
    0b0001000000000000000000000000000000000000000000000000000000000000,
    0b0010000000000000000000000000000000000000000000000000000000000000,
    0b0100000000000000000000000000000000000000000000000000000000000000,
    0b1000000000000000000000000000000000000000000000000000000000000000
};
public:
    typedef B block_t;
    static const size_t block_size = sizeof(block_t) * 8;
    block_t* data;
    size_t size;
    size_t blocks;
    class bit_ref{
    public:
        block_t* const block;
        const block_t mask;
        bit_ref(block_t& block, const block_t mask) noexcept : block(&block), mask(mask){}
        inline void operator=(bool v) const noexcept{
            if(v) *block |= mask;
            else  *block &= ~mask;
        }
        inline operator bool() const noexcept{
            return (bool)(*block & mask);
        }
    };

    bits_t() noexcept : data(nullptr){}
    void resize(const size_t n, const bool v) noexcept{
        block_t fill = v ? ~block_t(0) : block_t(0);
        size = n;
        blocks = (n + block_size - 1) / block_size;
        data = new block_t[blocks];
        std::fill(data, data + blocks, fill);
    }
    inline block_t& block_at_index(const size_t i) const noexcept{
        return data[i / block_size];
    }
    inline size_t index_in_block(const size_t i) const noexcept{
        return i % block_size;
    }
    inline bit_ref operator[](const size_t i) noexcept{
        return bit_ref(block_at_index(i), mask[index_in_block(i)]);
    }
    ~bits_t(){
        delete[] data;
    }
};
#endif // LIB_BITS_T_H

(用g++4.7-O3编译)

Eratosthenes筛选算法(33.333.333位)

std::vector<bool> 19.1s

bits_t<size_t> 19.9s

bits_t<size_t> (with lookup table) 19.7s

ctor+调整大小(33.333.333位)+dtor

std::vector<bool> 120ms

bits_t<size_t> 150ms

问题:经济放缓是从哪里来的?

除了其他一些用户指出的所有问题之外,每次达到当前块限制时,您的调整大小都会分配更多的内存来添加一个块。std::向量将使缓冲区的大小增加一倍(因此,如果您已经有16个块,那么现在您有32个块)。换句话说,他们做的新事情会比你少。

话虽如此,你没有做必要的删除&复制,这可能会对您的版本产生"积极"影响。。。("积极"影响速度,不删除旧数据,也不将其复制到新缓冲区,这是不积极的。)

此外,std::矢量将适当地扩大缓冲区,从而复制可能已经在CPU缓存中的数据。在您的版本中,缓存会丢失,因为您只需忽略每个resize()上的旧缓冲区。

此外,当一个类处理内存缓冲区时,由于某些原因,通常会实现复制和赋值运算符。。。您可以考虑使用shared_ptr<>()。然后删除被隐藏,类是一个模板,所以它非常快(它不会添加任何你自己版本中没有的代码。)

===更新

还有一件事。您是operator []实现:

inline bit_ref operator[](const size_t i) noexcept{
    return bit_ref(block_at_index(i), mask[index_in_block(i)]);
}

(附带说明:内联不是必需的,因为您在类中编写代码的事实意味着您已经同意了内联功能。)

您只提供一个非常量版本,它"很慢",因为它创建了一个子类。您应该尝试实现一个返回bool的const版本,看看这是否解释了您看到的大约3%的差异。

bool operator[](const size_t i) const noexcept
{
    return (block_at_index(i) & mask[index_in_block(i)]) != 0;
}

此外,使用mask[]阵列也可以降低速度。(1LL<<(索引&0x3F))应该更快(2条CPU指令具有0内存访问)。

显然,函数中i % block_size的包装是的罪魁祸首

inline size_t index_in_block ( const size_t i ) const noexcept {
    return i % block_size;
}
inline bit_ref operator[] ( const size_t i ) noexcept {
    return bit_ref( block_at_index( i ), block_t( 1 ) << index_in_block( i ) );
}

所以用代替上面的代码

inline bit_ref operator[] ( const size_t i ) noexcept {
    return bit_ref( block_at_index( i ), block_t( 1 ) << ( i % block_size ) );
}

解决了这个问题。然而,我仍然不知道为什么。我的最佳猜测是,我没有正确地获得index_in_block的签名,因此优化器无法以类似于手动内联的方式内联此函数。

这是新代码。

#ifndef LIB_BITS_2_T_H
#define LIB_BITS_2_T_H
#include <algorithm>
template <typename B>
class bits_2_t {
public:
    typedef B block_t;
    static const int block_size = sizeof( block_t ) * __CHAR_BIT__;

private:
    block_t* _data;
    size_t _size;
    size_t _blocks;

public:
    class bit_ref {
    public:
        block_t* const block;
        const block_t mask;

        bit_ref ( block_t& block, const block_t mask) noexcept
        : block( &block ), mask( mask ) {}

        inline bool operator= ( const bool v ) const noexcept {
            if ( v ) *block |= mask;
            else     *block &= ~mask;
            return v;
        }
        inline operator bool() const noexcept {
            return (bool)( *block & mask );
        }

    };

    bits_2_t () noexcept : _data( nullptr ), _size( 0 ), _blocks( 0 ) {}
    bits_2_t ( const size_t n ) noexcept : _data( nullptr ), _size( n ) {
        _blocks = number_of_blocks_needed( n );
        _data = new block_t[_blocks];
        const block_t fill( 0 );
        std::fill( _data, _data + _blocks, fill );
    }
    bits_2_t ( const size_t n, const bool v ) noexcept : _data( nullptr ), _size( n ) {
        _blocks = number_of_blocks_needed( n );
        _data = new block_t[_blocks];
        const block_t fill = v ? ~block_t( 0 ) : block_t( 0 );
        std::fill( _data, _data + _blocks, fill );
    }
    void resize ( const size_t n ) noexcept {
        resize( n, false );
    }
    void resize ( const size_t n, const bool v ) noexcept {
        const size_t tmpblocks = number_of_blocks_needed( n );
        const size_t copysize = std::min( _blocks, tmpblocks );
        block_t* tmpdata = new block_t[tmpblocks];
        std::copy( _data, _data + copysize, tmpdata );
        const block_t fill = v ? ~block_t( 0 ) : block_t( 0 );
        std::fill( tmpdata + copysize, tmpdata + tmpblocks, fill );
        delete[] _data;
        _data = tmpdata;
        _blocks = tmpblocks;
        _size = n;
    }
    inline size_t number_of_blocks_needed ( const size_t n ) const noexcept {
        return ( n + block_size - 1 ) / block_size;
    }
    inline block_t& block_at_index ( const size_t i ) const noexcept {
        return _data[i / block_size];
    }
    inline bit_ref operator[] ( const size_t i ) noexcept {
        return bit_ref( block_at_index( i ), block_t( 1 ) << ( i % block_size ) );
    }
    inline bool operator[] ( const size_t i ) const noexcept {
        return (bool)( block_at_index( i ) & ( block_t( 1 ) << ( i % block_size ) ) );
    }
    inline block_t* data () {
        return _data;
    }
    inline const block_t* data () const {
        return _data;
    }
    inline size_t size () const {
        return _size;
    }
    void clear () noexcept {
        delete[] _data;
        _size = 0;
        _blocks = 0;
        _data = nullptr;
    }
    ~bits_2_t () {
        clear();
    }

};
#endif // LIB_BITS_2_T_H

以下是我的amd64机器上的这段新代码的结果,适用于高达1.000.000.000的primes(实时运行3次三胜制)。

Eratosthenes筛,每个数字有1个记忆单元(不跳过2的倍数)

bits_t<uint8_t>

实际0m23.614s用户0m23.493s系统0m0.092s

bits_t<uint16_t>

真实0m24.399s用户0m24.294s系统0m0.084s

bits_t<uint32_t>

real 0m23.501s用户0m23.372s系统0m0.108s<--最佳

bits_t<uint64_t>

真实0m24.393s用户0m24.304s系统0m0.068s

std::vector<bool>

实际0m24.362s用户0m24.276s系统0m0.056s

std::vector<uint8_t>

真实0m38.303s用户0m37.570s系统0m0.683s

这是筛选的代码(其中(...)应该由您选择的位数组代替)。

#include <iostream>
typedef (...) array_t;
int main ( int argc, char const *argv[] ) {
    if ( argc != 2 ) {
        std::cout << "#0 missing" << std::endl;
        return 1;
    }
    const size_t count = std::stoull( argv[1] );
    array_t prime( count, true );
    prime[0] = prime[1] = false;

    for ( size_t k = 2 ; k * k < count ; ++k ) {
        if ( prime[k] ) {
            for ( size_t i = k * k ; i < count ; i += k ) {
                prime[i] = false;
            }
        }
    }
    return 0;
}