将树转换为元组的编译时转换

Compiletime transform of tree into tuple

本文关键字:转换 编译 元组      更新时间:2023-10-16

我遇到了以下问题:

给定一个由Node<>类型的非终端节点和任意类型的终端节点(如AB等(表示的树(见下文(。

因为我不想使用运行时多态性,所以我喜欢通过constexpr函数将树转换为std::tuple,就像下面示例中立即调用的 lambda 表达式一样。

struct A {};
struct B {};
struct C {};
struct D {};
struct E {};
template<typename... T>
struct Node {
constexpr Node(const T&... n) : mChildren{n...} {}
std::tuple<T...> mChildren;
};
template<uint8_t N>
struct IndexNode {
std::array<uint8_t, N> mChildren;
};
int main() {
constexpr auto tree = []() {
auto t = Node(A(), 
B(), 
Node(C(),
Node(D())), 
E());    
// transform t into std::tuple<A, B, C, D, IndexNode<1>{3}, IndexNode<2>{2, 4}, E, IndexNode<4>{0, 1, 5, 6}>
// return ...;        
}();
}

这个想法是使用元组元素的索引作为指向树的活动(选定(节点的"指针"。总体目的是在μC上实现菜单系统,而无需使用运行时多态性。

如果我可以在编译时执行此转换,则可以使用特殊的元函数来检索活动的元组元素并在其上调用某个函数。这个函数我已经写好了。

缺失的环节肯定是某种深度优先的树遍历......但我想不通。

使用大量的std::tuple_catstd::index_sequence和递归怎么样?

#include <tuple>
#include <array>
#include <iostream>
struct A {};
struct B {};
struct C {};
struct D {};
struct E {};
template <typename... T>
struct Node
{
constexpr Node (T const & ... n) : mChildren { n... }
{ }
std::tuple<T...> mChildren;
};
template <std::size_t N>
struct IndexNode
{ std::array<uint8_t, N> mChildren; };
template <typename>
struct cntT : public std::integral_constant<std::size_t, 1U>
{ };
template <typename ... Ts>
struct cntT<Node<Ts...>>
: public std::integral_constant<std::size_t, 1U + (cntT<Ts>::value + ...)>
{ };
template <typename T>
struct getT
{
constexpr auto operator() (T const & t, std::size_t & cnt)
{ ++cnt; return std::make_tuple(t); }
};
template <typename ... Ts>
struct getT<Node<Ts...>>
{
template <std::size_t ... Is>
constexpr auto func (std::tuple<Ts...> const & t,
std::index_sequence<Is...> const &,
std::size_t & cnt)
{
std::size_t val { cnt };
IndexNode<sizeof...(Ts)> in
{ { { uint8_t(val += cntT<Ts>::value)... } } };
return std::tuple_cat(getT<Ts>()(std::get<Is>(t), cnt)...,
std::make_tuple(in));
}
constexpr auto operator() (Node<Ts...> const & n, std::size_t & cnt)
{
return func(n.mChildren, std::make_index_sequence<sizeof...(Ts)>{},
cnt);
}
};
template <typename ... Ts>
constexpr auto linearNode (Node<Ts...> const & n)
{ 
std::size_t cnt ( -1 );
return getT<Node<Ts...>>()(n, cnt);
}
int main()
{  
constexpr auto tree = []()
{
auto t = Node { A{}, B{}, Node{ C{}, Node{ D{} } }, E{} };
return linearNode(t);
}();
static_assert( std::is_same<
decltype(tree),
std::tuple<A, B, C, D, IndexNode<1>, IndexNode<2>, E,
IndexNode<4>> const>::value, "!");
std::cout << "IndexNode<1> { ";
for ( auto const & v : std::get<4U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<1> { 3, }
std::cout << "IndexNode<2> { ";
for ( auto const & v : std::get<5U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<2> { 2, 4, }
std::cout << "IndexNode<4> { ";
for ( auto const & v : std::get<7U>(tree).mChildren )
std::cout << int(v) << ", ";
std::cout << "}" << std::endl; // print IndexNode<4> { 0, 1, 5, 6, }
}

你@wimalopaan读过max66的答案,还是为你的想法找到了另一种解决方案?我试图通过索引映射连接输入和输出来解决这个问题。然而,这变得比我预期的要复杂得多。以下是我尝试建立索引映射的方法:

对于输出元组,有一个明显的索引选择。稍微交换存储顺序(这对我来说更简单(,索引读取

using Tree = std::tuple<
IndexNode<4>{1, 2, 3, 7},// 0
A,                     // 1
B,                     // 2
IndexNode<2>{4, 5},    // 3
C,                   // 4
IndexNode<1>{6},     // 5
D,                 // 6
E                      // 7
>;

输入由嵌套元组组成,所以让我们发明一些多索引:

Node(/* 1, 2, 3, 7 */ // 0, Vals<>
A{},                // 1, Vals<0>
B{},                // 2, Vals<1>
Node(/* 4, 5 */     // 3, Vals<2>
C{},              // 4, Vals<2, 0>
Node(/* 6 */      // 5, Vals<2, 1>
D{}             // 6, Vals<2, 1, 0>
)
),
E{}                 // 7, Vals<3>
);

为了计算IndexNode中的索引,指定"节点(包括其子节点(使用的输出索引数"很有用。在max66的答案中,这称为cntT。让我们在这里使用术语rank来表示这个数量,并通过函数重载进行计算:

template<class> struct Type {};// helper to pass a type by value (for overloading)
template<class Terminal>
size_t rank_of(Type<Terminal>) {// break depth recursion for terminal node
return 1;
}
template<class... Children>
size_t rank_of(Type<Node<Children...>>) {// continue recursion for non-terminal node
return (
1 +// count enclosing non-terminal node
... + rank_of(Type<Children>{})
);
}

可以应用相同的策略来获取输入表示中每个节点的多索引。多重索引(通过深度递归(累积到ParentInds中。

#include "indexer.hpp"// helper for the "indices trick"
#include "merge.hpp"// tuple_cat for types
#include "types.hpp"// template<class...> struct Types {};
#include "vals.hpp"// helper wrapped around std::integer_sequence
template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
Type<Terminal>,// break depth recursion for terminal node
ParentInds = ParentInds{}
) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
return Types<ParentInds>{};// wrap in Types<...> for simple merging
}
template<class... Children, class ParentInds=Vals<>>
auto indices_of(
Type<Node<Children...>>,// continue recursion for non-terminal node
ParentInds parent_inds = ParentInds{}
) {
return indexer<Children...>([&] (auto... child_inds) {
return merge(
Types<ParentInds>{},// indices for enclosing non-terminal node
indices_of(
Type<Children>{},
parent_inds.append(child_inds)
)...
);
});
}

GCC 7.2 的输出:

auto indices_of(Type<Terminal>, ParentInds) [with Terminal = E; ParentInds = Vals<3>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = D; ParentInds = Vals<2, 1, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = C; ParentInds = Vals<2, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = B; ParentInds = Vals<1>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = A; ParentInds = Vals<0>]

通过indices_of计算的索引映射,我们可以像这样构造输出元组:

template<class T>
constexpr auto transform(const T& t) {
static_assert(
std::is_same<
T,
Node<A, B, Node<C, Node<D> >, E>
>{}
);
auto inds = indices_of(Type<T>{});
static_assert(
std::is_same<
decltype(inds),
Types<
Vals<>,
Vals<0>,
Vals<1>,
Vals<2>,
Vals<2, 0>,
Vals<2, 1>,
Vals<2, 1, 0>,
Vals<3>
>
>{}
);
return indexer(inds.size, [&] (auto... is) {// `is` are the tuple's output inds
return std::make_tuple(// becomes the final output tuple
transform_at(
inds.construct_type_at(is),// multiindex `Vals<...>{}` for each tuple element
t,// input tree
is.next()// used by each `IndexNode`: offset for its index computation
)...
);
});
}

这是一个完整的(希望没有错误(工作示例(在线演示(:

#include <algorithm>
#include <iostream>
#include <tuple>
#include <numeric>
////////////////////////////////////////////////////////////////////////////////
template<size_t i>
struct Val : std::integral_constant<size_t, i> {
template<size_t dist=1>
constexpr auto next(Val<dist> = {}) {
return Val<i+dist>{};
}
};
template<size_t... is>
struct Vals {
template<size_t i>
constexpr auto append(Val<i>) {
return Vals<is..., i>{};
}
};
template<size_t i0, size_t... is>
constexpr auto front(Vals<i0, is...>) { return Val<i0>{}; }
template<size_t i0, size_t... is>
constexpr auto pop_front(Vals<i0, is...>) { return Vals<is...>{}; }
////////////////////////////////////////////////////////////////////////////////
template<class> struct Type {};
template<class... Ts>
struct Types {
static constexpr auto size = Val<sizeof...(Ts)>{};
template<std::size_t i, class... Args>
constexpr auto construct_type_at(Val<i>, Args&&... args) {
using Ret = std::tuple_element_t<i, std::tuple<Ts...>>;
return Ret(std::forward<Args>(args)...);
}
};
////////////////////////////////////////////////////////////////////////////////
template<std::size_t... is, class F>
constexpr decltype(auto) indexer_impl(std::index_sequence<is...>, F f) {
return f(Val<is>{}...);
}
template<class... Ts, class F>
constexpr decltype(auto) indexer(F f) {
return indexer_impl(std::index_sequence_for<Ts...>{}, f);
}
template<size_t N, class F>
constexpr decltype(auto) indexer(std::integral_constant<size_t, N>, F f) {
return indexer_impl(std::make_index_sequence<N>{}, f);
}
////////////////////////////////////////////////////////////////////////////////
template<class... Ts>
auto merge(Types<Ts...> done) {
return done;
}
template<class... Ts, class... Us, class... Vs>
auto merge(Types<Ts...>, Types<Us...>, Vs...) {
// TODO: if desired, switch to logarithmic recursion
// https://stackoverflow.com/a/46934308/2615118
return merge(Types<Ts..., Us...>{}, Vs{}...);
}
////////////////////////////////////////////////////////////////////////////////
struct TerminalNode { const char* msg{""}; };// JUST FOR DEBUG
std::ostream& operator<<(std::ostream& os, const TerminalNode& tn) {
return os << tn.msg << std::endl;// JUST FOR DEBUG
}
struct A : TerminalNode {};// INHERITANCE JUST FOR DEBUG
struct B : TerminalNode {};
struct C : TerminalNode {};
struct D : TerminalNode {};
struct E : TerminalNode {};
template<typename... T>
struct Node {
constexpr Node(const T&... n) : mChildren{n...} {}
std::tuple<T...> mChildren;
};
template<size_t N>
struct IndexNode {
std::array<size_t, N> mChildren;
constexpr IndexNode(std::array<size_t, N> arr) : mChildren(arr) {}
friend std::ostream& operator<<(std::ostream& os, const IndexNode& self) {
for(auto r : self.mChildren) os << r << ", ";// JUST FOR DEBUG
return os << "n";
}
};
////////////////////////////////////////////////////////////////////////////////
template<class Terminal>
size_t rank_of(
Type<Terminal>// break depth recursion for terminal node
) {
return 1;
}
template<class... Children>
size_t rank_of(
Type<Node<Children...>>// continue recursion for non-terminal node
) {
return (
1 +// count enclosing non-terminal node
... + rank_of(Type<Children>{})
);
}
////////////////////////////////////////////////////////////////////////////////
template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
Type<Terminal>,// break depth recursion for terminal node
ParentInds = ParentInds{}
) {
std::cout << __PRETTY_FUNCTION__ << std::endl;
return Types<ParentInds>{};// wrap in Types<...> for simple merging
}
template<class... Children, class ParentInds=Vals<>>
auto indices_of(
Type<Node<Children...>>,// continue recursion for non-terminal node
ParentInds parent_inds = ParentInds{}
) {
return indexer<Children...>([&] (auto... child_inds) {
return merge(
Types<ParentInds>{},// indices for enclosing non-terminal node
indices_of(
Type<Children>{},
parent_inds.append(child_inds)
)...
);
});
}
////////////////////////////////////////////////////////////////////////////////
template<class It, class T>
constexpr It exclusive_scan(It first, It last, It out, T init) {
for(auto it=first; it!=last; ++it) {
auto in = *it;
*out++ = init;
init += in;
}
return out;
}
////////////////////////////////////////////////////////////////////////////////
template<size_t... child_inds, class Terminal, class Offset>
constexpr decltype(auto) transform_at(
Vals<child_inds...> inds,
const Terminal& terminal,
Offset
) {
static_assert(0 == sizeof...(child_inds));
return terminal;
}
template<size_t... child_inds, class... Children, class Offset>
constexpr decltype(auto) transform_at(
Vals<child_inds...> inds,
const Node<Children...>& node,
Offset offset = Offset{}
) {
if constexpr(0 == sizeof...(child_inds)) {// the IndexNode is desired
auto ranks = std::array{rank_of(Type<Children>{})...};
exclusive_scan(std::begin(ranks), std::end(ranks), std::begin(ranks), 0);
auto add_offset = [] (size_t& i) { i += Offset{}; };
std::for_each(std::begin(ranks), std::end(ranks), add_offset);
return IndexNode{ranks};
}
else {// some child of this enclosing node is desired
return transform_at(
pop_front(inds),
std::get<front(inds)>(node.mChildren),
offset
);
}
}
template<class T>
constexpr auto transform(const T& t) {
auto inds = indices_of(Type<T>{});
return indexer(inds.size, [&] (auto... is) {// is are the tuple output inds
return std::make_tuple(// becomes the final output tuple
transform_at(
inds.construct_type_at(is),// multiindex for each tuple element
t,// input tree
is.next()// used by each `IndexNode`: offset for its index computation
)...
);
});
}
////////////////////////////////////////////////////////////////////////////////
int main() {
auto tree = []() {
auto t = Node(    // 0, Val<>
A{"FROM A"},    // 1, Val<0>
B{"FROM B"},    // 2, Val<1>
Node(           // 3, Val<2>
C{"FROM C"},  // 4, Val<2, 0>
Node(         // 5, Val<2, 1>
D{"FROM D"} // 6, Val<2, 1, 0>
)
),
E{"FROM E"}     // 7, Val<3>
);
return transform(t);
}();
using Tree = decltype(tree);
indexer(std::tuple_size<Tree>{}, [&] (auto... is) {
(std::cout << ... << std::get<is>(tree));
});
return 0;
}