Fruchterman-Reingold的吸引力是如何与Boost图库协同工作的

How does the attractive force of Fruchterman Reingold work with Boost Graph Library

本文关键字:Boost 协同工作 吸引力 Fruchterman-Reingold      更新时间:2023-10-16

我正在学习Boost图库中的Fruchterman-Reingold算法。通过阅读文档,我知道算法是根据图形布局计算所有节点的位置,但我的问题是我无法理解Boost图库中吸引力的计算步骤。

例如,如果拓扑是高度为100、宽度为100的矩形,则每个顶点被标记为字符串,并且每个对顶点之间的关系为:

"0"  "5"
"Kevin" "Martin"
"Ryan" "Leo"
"Y" "S"
"Kevin" "S"
"American" "USA"

每一行表示两个标记的顶点已连接。每个顶点的吸引力公式应该是:

f = (d^2) / k

其中CCD_ 1是两个顶点之间的距离,而CCD_。但我不明白如何在Boost图库中获得Fruchterman-Reingold代码中的距离d。在本例中,它是否将每对顶点之间的ASCII值差计算为距离d?(ASCII值"0"为48,ASCII值"5"为53。Fruchterman-Reingold在BGL中计算53-48=5为d,这是真的吗?)如果有人能帮我,我真的很感激。

Furchterman-Reingold实现采用IN/OUT拓扑。

它希望拓扑在执行之前被初始化到某种状态。传递到吸引函数的距离将是在该迭代时从拓扑到的距离。

注意注意(除非progressive设置为true)Furterman Reingold将在默认情况下随机初始化拓扑(使用random_graph_layout)。

以上所有内容均取自文档。

这里有一个使用输入图的小演示,展示了如何实现这样一个吸引人的force函数:

struct AttractionF {
template <typename EdgeDescriptor, typename Graph>
double operator()(EdgeDescriptor /*ed*/, double k, double d, Graph const& /*g*/) const {
//std::cout << "DEBUG af('" << g[source(ed, g)].name << " -> " << g[target(ed, g)].name << "; k:" << k << "; d:" << d << ")n";
return (d*d/k);
}
};

请参阅Coliru直播

#include <memory>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/fruchterman_reingold.hpp>
#include <boost/graph/random_layout.hpp>
#include <libs/graph/src/read_graphviz_new.cpp>
#include <boost/graph/topology.hpp>
#include <boost/random.hpp>
using namespace boost;
struct Vertex {
std::string name;
};
struct AttractionF {
template <typename EdgeDescriptor, typename Graph>
double operator()(EdgeDescriptor /*ed*/, double k, double d, Graph const& /*g*/) const {
//std::cout << "DEBUG af('" << g[source(ed, g)].name << " -> " << g[target(ed, g)].name << "; k:" << k << "; d:" << d << ")n";
return (d*d/k);
}
};
using Graph = adjacency_list<vecS, vecS, undirectedS, Vertex>;
Graph make_sample();
int main() {
auto g = make_sample();
using Topology = square_topology<boost::mt19937>;
using Position = Topology::point_type;
std::vector<Position> positions(num_vertices(g));
square_topology<boost::mt19937> topology;
random_graph_layout(g, 
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology);
fruchterman_reingold_force_directed_layout(
g,
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology,
attractive_force(AttractionF())
);
dynamic_properties dp;
dp.property("node_id", get(&Vertex::name, g));
write_graphviz_dp(std::cout, g, dp);
}
Graph make_sample() {
std::string const sample_dot = R"(
graph {
"0"        -- "5";
"Kevin"    -- "Martin";
"Ryan"     -- "Leo";
"Y"        -- "S";
"Kevin"    -- "S";
"American" -- "USA";
}
)";
Graph g;
dynamic_properties dp;
dp.property("node_id", get(&Vertex::name, g));
read_graphviz(sample_dot, g, dp);
return g;
}

请注意,在c++11中,您同样可以很好地使用lambda:

fruchterman_reingold_force_directed_layout(
g,
make_iterator_property_map(positions.begin(), boost::identity_property_map{}),
topology,
attractive_force([](Graph::edge_descriptor, double k, double d, Graph const&) { return (d*d)/k; })
);