在五个节点的图上应用 Dijkstra 算法

Applying Dijkstra's algorithm on a graph of five nodes

本文关键字:应用 Dijkstra 算法 节点 五个      更新时间:2023-10-16

上周,我发布了一段代码来应用Dijkstra的算法来计算图形中节点之间的最短路径。我已经做了一些改进,但仍然卡住了。

我有一个班级Graph.它应该由另外两个类构造:类Edge实例的向量,以及类Vertex元素的另一个向量。每个顶点都有一个 ID 和一个carried,以保持与源节点的累积距离,并且每个边都有两个顶点和一个权重。

Graph 有一个方法;它的名字是 shortest 它接受两个顶点作为参数:第一个是图形的源,第二个是目标。

我的方法是尝试消除连接到源顶点的边,并将其权重添加到相邻顶点,将它们保存在carried中,Vertex字段以保持跟踪每个顶点的情况。然后,我们将选择其carried上的最低顶点作为新源,并一遍又一遍地重复相同的操作,直到我们最终只得到一条边。

为了演示结果,我初始化了一个vers[0], vers[1], vers[2], vers[3], vers[4]有五个顶点的图,并且从eds[0], eds[1], ....eds[9]开始有10条边连接这些顶点。

目标顶点是vers[4]的,而源顶点vers[2]由 4 条边连接,因此在应用方法 shortest 时,如下面的代码所示,我应该去掉所有这 4 条边,并在第一轮结束时得到 6 条边。结果如下:

Hello, This is a graph
0____1     5
0____3     4
0____4     6
1____3     5
1____4     7
3____4     3
size of edges  6
size of vertices  4
curried vertex_0  9
curried vertex_1  2
curried vertex_2  1
curried vertex_3  8 

正如我们所看到的,到目前为止,结果看起来不错,因为我们没有看到源顶点,即 2,在消除连接到源顶点的四条边后,我们最终只剩下 6 条边。另外,我们必须做右边,或者每条边的权重,向下我们有每个剩余顶点的carried

现在,如果我们进行第二轮,我们将得到以下结果:

Hello, This is a graph
0____1     5
0____4     6
1____4     7
size of edges  3
size of vertices  3
curried vertex_0  9
curried vertex_1  2
curried vertex_2  8

如您所见,我们剩下 3 条边(这是正确的)和三个顶点(也是正确的),并且边的权重是正确的,但问题是我为每个顶点得到了不正确的carried值,这将使代码选择错误的源在接下来的几轮中继续。也就是说,我们应该有5, 2, 4而不是9, 2, 8.

可以看到问题出在哪里,但我不明白为什么我没有得到正确的解决方案。我认为问题位于代码中显示的星号行之间。

这是代码:

#include<iostream>
#include<vector>
#include <stdlib.h>   // for rand()
using namespace std;

class Vertex
{
 private:
     unsigned int id;                 // the name of the vertex
     unsigned int carried;            // the weight a vertex may carry when calculating shortest path    
public:   
    unsigned int get_id(){return id;};
    unsigned int get_carried(){return carried;};
    void set_id(unsigned int value) {id = value;};
    void set_carried(unsigned int value) {carried = value;};
    inline bool operator==( const Vertex& ver_1){ return id == ver_1.id;};
    Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried)     // constructor
    {}   
    ~Vertex() {};                                     // destructor
};

class Edge
{
  private:
    Vertex first_vertex;                 // a vertex on one side of the edge
    Vertex second_vertex;                // a vertex on the other side of the edge
    unsigned int weight;                 // the value of the edge ( or its weight )     
  public:   
    unsigned int get_weight() {return weight;};
    void set_weight(unsigned int value) {weight = value;};
    Vertex get_ver_1(){return first_vertex;};
    Vertex get_ver_2(){return second_vertex;};
    void set_first_vertex(Vertex v1) {first_vertex = v1;};
    void set_second_vertex(Vertex v2) {second_vertex = v2;};

    Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0)
    : first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) {}   
    ~Edge() {} ; // destructor      
};

class Graph
{
private:
     std::vector<Vertex>   vertices;
     std::vector<Edge>   edges;  

public:
     Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector)
    : vertices(ver_vector), edges(edg_vector){}
     ~Graph() {}
     vector<Vertex> get_vertices(){return vertices;}
     vector<Edge> get_edges(){return edges;}
     void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}
     void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}
     unsigned int shortest(Vertex src, Vertex dis); 
};

unsigned int Graph::shortest(Vertex src, Vertex dis) {
        vector<Vertex> ver_out;
        vector<Edge> track;
         for (unsigned int i = 0; i < edges.size();) { 
            if ((edges[i].get_ver_1() == src) || (edges[i].get_ver_2() == src)) {
                track.push_back(edges[i]);
                if (edges[i].get_ver_1() == src) {
                    ver_out.push_back(edges[i].get_ver_2());
                    ver_out.back().set_carried(edges[i].get_weight());
                } else {
                    ver_out.push_back(edges[i].get_ver_1());
                    ver_out.back().set_carried(edges[i].get_weight());
                }
                edges.erase(edges.begin() + i);
                } else {
                            ++i; // increment only if not erasing
                        }
            }
        for(unsigned int i = 0; i < vertices.size(); ++i)  
            for(unsigned int iii = 0; iii < ver_out.size(); ++iii) {
                if(vertices[i] == ver_out[iii]){vertices[i].set_carried(ver_out[iii].get_carried());};};

        for(unsigned int i = 0; i < vertices.size(); ++i)
            if(vertices[i] == src) vertices.erase(vertices.begin() + i);
        track.clear();  
        if(!(ver_out[0] == dis)) {src = ver_out[0];}
        else {src = ver_out[1];}
        for(unsigned int i = 0; i < ver_out.size(); ++i)          
            if((ver_out[i].get_carried() < src.get_carried()) && (!(ver_out[i] == dis)))
                src = ver_out[i];
        ver_out.clear();

        for(unsigned int round = 0; round < 1 ; ++round)     //vertices.size()
        {
            for(unsigned int k = 0; k < edges.size(); ) 
                {
                    if((edges[k].get_ver_1() == src) || (edges[k].get_ver_2() == src))
                        {
                        track.push_back (edges[k]);
                        for(unsigned int i = 0; i < vertices.size(); ++i)
                        {
                        if(track.back().get_ver_1() == vertices[i]) edges[k].get_ver_1().set_carried(vertices[i].get_carried());
                        if(track.back().get_ver_2() == vertices[i]) edges[k].get_ver_2().set_carried(vertices[i].get_carried());
                        }
                        if(track.back().get_ver_1() == src)             
                            {
                            ver_out.push_back (track.back().get_ver_2()); //************************************ 
                            if(track.back().get_ver_2().get_carried() > (track.back().get_ver_1().get_carried() + track.back().get_weight())) //<===
                                ver_out.back().set_carried(track.back().get_ver_1().get_carried() + track.back().get_weight());
                            else ver_out.back().set_carried(track.back().get_ver_2().get_carried());
                            }
                        else{
                            ver_out.push_back (track.back().get_ver_1());
                            if(track.back().get_ver_1().get_carried() > (track.back().get_ver_2().get_carried() + track.back().get_weight())) // <===
                                ver_out.back().set_carried(track.back().get_ver_2().get_carried() + track.back().get_weight());
                            else {ver_out.back().set_carried(track.back().get_ver_1().get_carried());}
                            }
                            //*****************************
                        edges.erase(edges.begin() + k);
                        }
                    else{
                            ++k; // increment only if not erasing
                        }
                };

            for(unsigned int t = 0; t < vertices.size(); ++t)
                if(vertices[t] == src) vertices.erase(vertices.begin() + t);
            track.clear();

            if(!(ver_out[0] == dis)) {src = ver_out[0];}
            else {src = ver_out[1];}
            for(unsigned int tt = 0; tt < edges.size(); ++tt)
                {
                if(ver_out[tt].get_carried() < src.get_carried())
                    {
                    src = ver_out[tt];
                    }
                }
            ver_out.clear();
        }
        if(edges[0].get_ver_1() == dis) return edges[0].get_weight() +edges[0].get_ver_2().get_carried();
        else return edges[0].get_weight() +edges[0].get_ver_1().get_carried();
    }



int main()
{
cout<< "Hello, This is a graph"<< endl;
vector<Vertex> vers(5);
vers[0].set_id(0);
vers[1].set_id(1);
vers[2].set_id(2);
vers[3].set_id(3);
vers[4].set_id(4);
vector<Edge> eds(10);
eds[0].set_first_vertex(vers[0]);
eds[0].set_second_vertex(vers[1]);
eds[0].set_weight(5);   
eds[1].set_first_vertex(vers[0]);
eds[1].set_second_vertex(vers[2]);
eds[1].set_weight(9);
eds[2].set_first_vertex(vers[0]);
eds[2].set_second_vertex(vers[3]);
eds[2].set_weight(4);
eds[3].set_first_vertex(vers[0]);
eds[3].set_second_vertex(vers[4]);
eds[3].set_weight(6);
eds[4].set_first_vertex(vers[1]);
eds[4].set_second_vertex(vers[2]);
eds[4].set_weight(2);
eds[5].set_first_vertex(vers[1]);
eds[5].set_second_vertex(vers[3]);
eds[5].set_weight(5);
eds[6].set_first_vertex(vers[1]);
eds[6].set_second_vertex(vers[4]);
eds[6].set_weight(7);
eds[7].set_first_vertex(vers[2]);
eds[7].set_second_vertex(vers[3]);
eds[7].set_weight(1);
eds[8].set_first_vertex(vers[2]);
eds[8].set_second_vertex(vers[4]);
eds[8].set_weight(8);
eds[9].set_first_vertex(vers[3]);
eds[9].set_second_vertex(vers[4]);
eds[9].set_weight(3);

unsigned int path;
Graph graf(vers, eds);
path = graf.shortest(vers[2], vers[4]);

cout<<graf.get_edges()[0].get_ver_1().get_id() <<"____"<<graf.get_edges()[0].get_ver_2().get_id() <<"     "<<graf.get_edges()[0].get_weight()<< endl;  //test
cout<<graf.get_edges()[1].get_ver_1().get_id() <<"____"<<graf.get_edges()[1].get_ver_2().get_id() <<"     "<<graf.get_edges()[1].get_weight()<< endl;  //test
cout<<graf.get_edges()[2].get_ver_1().get_id() <<"____"<<graf.get_edges()[2].get_ver_2().get_id() <<"     "<<graf.get_edges()[2].get_weight()<< endl;  //test
//cout<<graf.get_edges()[3].get_ver_1().get_id() <<"____"<<graf.get_edges()[3].get_ver_2().get_id() <<"     "<<graf.get_edges()[3].get_weight()<< endl;  //test
//cout<<graf.get_edges()[4].get_ver_1().get_id() <<"____"<<graf.get_edges()[4].get_ver_2().get_id() <<"     "<<graf.get_edges()[4].get_weight()<< endl;  //test
//cout<<graf.get_edges()[5].get_ver_1().get_id() <<"____"<<graf.get_edges()[5].get_ver_2().get_id() <<"     "<<graf.get_edges()[5].get_weight()<< endl;  //test
//cout<<graf.get_edges()[6].get_ver_1().get_id() <<"____"<<graf.get_edges()[6].get_ver_2().get_id() <<"     "<<graf.get_edges()[6].get_weight()<< endl;  //test
//cout<<graf.get_edges()[7].get_ver_1().get_id() <<"____"<<graf.get_edges()[7].get_ver_2().get_id() <<"     "<<graf.get_edges()[7].get_weight()<< endl;  //test
//cout<<graf.get_edges()[8].get_ver_1().get_id() <<"____"<<graf.get_edges()[8].get_ver_2().get_id() <<"     "<<graf.get_edges()[8].get_weight()<< endl;  //test
//cout<<graf.get_edges()[9].get_ver_1().get_id() <<"____"<<graf.get_edges()[9].get_ver_2().get_id() <<"     "<<graf.get_edges()[9].get_weight()<< endl;  //test

cout<<"size of edges  "<<graf.get_edges().size()<< endl;
cout<<"size of vertices  "<<graf.get_vertices().size()<< endl;
cout<<"curried vertex_0  "<<graf.get_vertices()[0].get_carried()<< endl;
cout<<"curried vertex_1  "<<graf.get_vertices()[1].get_carried()<< endl;
cout<<"curried vertex_2  "<<graf.get_vertices()[2].get_carried()<< endl;
//cout<<"curried vertex_3  "<<graf.get_vertices()[3].get_carried()<< endl;
//cout<< path << endl;
return 0;
}

据我了解您的代码,它缺少Dijkstra算法的一些基本部分。查看维基百科上的dijkstra以查看算法的所有步骤。我在你的算法中找不到两件事,但绝对是Dijkstra算法的一部分:

  1. 为每个顶点分配无限(非常高)的初始距离(在您携带的情况下)
  2. 到每个新到达顶点的总距离是通向它的边的权重/长度 + 另一个顶点到源的距离

我将包括一个有效的Dijkstra算法,因此您可以比较自己的算法。它包括一些更高级的数据结构(例如优先级队列),但您迟早会遇到这种情况。祝你学习和纠正好运!

#define MAX_VER 1000 // Maximum number of vertices
#define INFINITE 0x3fffffff // 7*f ~ 1.000.000.000
#include <vector>
#include <queue>
#include <iostream>
using namespace std;
struct edge {
    int to;
    int length;
    edge(int to, int length) : to(to), length(length) {}
};
struct vertex {
    vector<edge> edges;
    int dis;
    int prev;
};
vertex vertices[MAX_VER];
void reset() {
    for (int i=0; i < MAX_VER; i++) {
        vertices[i].edges.clear();
        vertices[i].dis = INFINITE;
        vertices[i].prev = -1;
    }
}
void addedge(int from, int to, int length=-1, bool directed=true) {
    vertices[from].edges.push_back(edge(to, length));
    if (!directed) vertices[to].edges.push_back(edge(from, length));
}
typedef pair<int, int> pp;
void dijkstra(int source) {
    //distance, vertex
    priority_queue<pp, vector<pp>, greater<pp> > q;
    vertices[source].dis = 0;
    q.push(make_pair(0, source));
    while (!q.empty()) {
        int u = q.top().second;
        int dis = q.top().first;
        q.pop();
        if (dis > vertices[u].dis) continue;
        for (size_t i = 0; i < vertices[u].edges.size(); i++) {
            edge &e = vertices[u].edges[i];
            if (dis + e.length < vertices[e.to].dis) {
                vertices[e.to].dis = dis + e.length;
                vertices[e.to].prev = u;
                q.push(make_pair(vertices[e.to].dis, e.to));
            }
        }
    }
}
int main() {
    reset();
    addedge(0, 1, 5, false);
    addedge(0, 2, 9, false);
    addedge(0, 3, 4, false);
    addedge(0, 4, 6, false);
    addedge(1, 2, 2, false);
    addedge(1, 3, 5, false);
    addedge(1, 4, 7, false);
    addedge(2, 3, 1, false);
    addedge(2, 4, 8, false);
    addedge(3, 4, 3, false);
    dijkstra(2);
    cout << "Distance from vertex 2 to 4 is: " << vertices[4].dis << endl;
    return 0;
}