为什么在乘法之前转置矩阵会导致很大的加速

Why does transposing matrix before multiplication results in great speed-up

本文关键字:加速 转置 为什么      更新时间:2023-10-16

我听说在乘法之前转置矩阵会因为缓存局部性而大大加快运算速度。所以我写了一个简单的C++程序来测试它与行主排序(编译需要 C++11 和 boost)。

结果令人惊讶:7.43秒对0.94秒。但我不明白为什么它会加速。事实上,在第二个版本(第一个转置)中,乘法代码通过 stride-1 模式访问数据,并且比第一个具有更好的局部性。但是,要转置矩阵 B,也必须非顺序地访问数据,并且还会导致大量缓存未命中。分配内存和复制数据的开销也应该是不可忽视的。那么,为什么第二个版本会大大加快代码速度呢?

#include <iostream>
#include <vector>
#include <boost/timer/timer.hpp>
#include <random>
std::vector<int> random_ints(size_t size)
{
    std::vector<int> result;
    result.reserve(size);
    std::random_device rd;
    std::mt19937 engine(rd());
    std::uniform_int_distribution<int> dist(0, 100);
    for (size_t i = 0; i < size; ++i)
        result.push_back(dist(engine));
    return result;
}
// matrix A: m x n; matrix B: n x p; matrix C: m x n;
std::vector<int> matrix_multiply1(const std::vector<int>& A, const std::vector<int>& B, size_t m, size_t n, size_t p)
{
    boost::timer::auto_cpu_timer t;
    std::vector<int> C(m * p);
    for (size_t i = 0; i < m; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            for (size_t k = 0; k < n; ++k)
            {
                C[i * m + j] += A[i * m + k] * B[k * n + j];
                // B is accessed non-sequentially
            }
        }
    }
    return C;
}
// matrix A: m x n; matrix B: n x p; matrix C: m x n;
std::vector<int> matrix_multiply2(const std::vector<int>& A, const std::vector<int>& B, size_t m, size_t n, size_t p)
{
    boost::timer::auto_cpu_timer t;
    std::vector<int> C(m * p), B_transpose(n * p);
    // transposing B
    for (size_t i = 0; i < n; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            B_transpose[i + j * p] = B[i * n + j];
            // B_transpose is accessed non-sequentially
        }
    }
    // multiplication
    for (size_t i = 0; i < m; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            for (size_t k = 0; k < n; ++k)
            {
                C[i * m + j] += A[i * m + k] * B_transpose[k + j * p];
                // all sequential access
            }
        }
    }
    return C;
}
int main()
{
    const size_t size = 1 << 10;
    auto A = random_ints(size * size);
    auto C = matrix_multiply1(A, A, size, size, size);
    std::cout << C.front() << ' ' << C.back() << std::endl; // output part of the result
    C = matrix_multiply2(A, A, size, size, size);
    std::cout << C.front() << ' ' << C.back() << std::endl; // compare with output of algorithm 1
    return 0;
}

乘法涉及的访问次数比转置多得多,因此它主导了执行时间。

只需查看 for 循环标头,您就可以清楚地看到这一点:

// transpose
for (size_t i = 0; i < n; ++i)
    for (size_t j = 0; j < p; ++j)
        ...
// multiplication
for (size_t i = 0; i < m; ++i)
    for (size_t j = 0; j < p; ++j)
        for (size_t k = 0; k < n; ++k)
            ...

有了额外的嵌套,第二个显然要多得多。