在未对齐的字节边界上高效打包 10 位数据

Efficiently packing 10-bit data on unaligned byte boundries

本文关键字:数据 高效 对齐 字节 边界      更新时间:2023-10-16

我正在尝试对与字节边界不一致的倍数进行一些位打包。这是我具体要做的事情。

我有一个 512 位数组(8 个 64 位整数)的数据。该数组内部是与 2 个字节对齐的 10 位数据。我需要做的是将 512 位剥离为 320 位的 10 位数据(5 个 64 位整数)。

我可以想到手动方法来做到这一点,我遍历 512 位数组的每个 2 字节部分,屏蔽掉 10 位,或者一起考虑字节边界并创建输出的 64 位整数。 像这样:

void pack512to320bits(uint64 (&array512bits)[8], uint64 (&array320bits)[5])
{
    array320bits[0] = (array512bits[0] & maskFor10bits) | ((array512bits[0] & (maskFor10bits << 16)) << 10) | 
                  ((array512bits[0] & (maskFor10bits << 32)) << 20) | ((array512bits[0] << 48) << 30) | 
                  ((arrayFor512bits[1] & (maskFor10bits)) << 40) | ((arrayFor512bits[1] & (maskFor10bits << 16)) << 50) |
                  ((arrayFor512bits[1] & (0xF << 32)) << 60);
    array320bits[1] = 0;
    array320bits[2] = 0;
    array320bits[3] = 0;
    array320bits[4] = 0;
}

我知道这会起作用,但它似乎容易出错,并且不容易扩展到更大的字节序列。

或者,我可以遍历输入数组,将所有 10 位值剥离到一个向量中,然后在末尾连接它们,再次确保我与字节边界对齐。像这样:

void pack512to320bits(uint64 (&array512bits)[8], uint64 (&array320bits)[5])
{
    static uint64 maskFor10bits = 0x3FF;
    std::vector<uint16> maskedPixelBytes(8 * 4);
    for (unsigned int qword = 0; qword < 8; ++qword)
    {
        for (unsigned int pixelBytes = 0; pixelBytes < 4; ++pixelBytes)
        {
        maskedPixelBytes[qword * 4 + pixelBytes] = (array512bits[qword] & (maskFor10bits << (16 * pixelbytes)));
        } 
    }
    array320bits[0] = maskedPixelBytes[0] | (maskedPixelBytes[1] << 10) | (maskedPixelBytes[2] << 20) | (maskedPixelBytes[3] << 30) |
                  (maskedPixelBytes[4] << 40) | (maskedPixelBytes[5] << 50) | (maskedPixelBytes[6] << 60);
    array320bits[1] = (maskedPixelBytes[6] >> 4) | (maskedPixelBytes[7] << 6) ...

    array320bits[2] = 0;
    array320bits[3] = 0;
    array320bits[4] = 0;
}

这种方式更容易调试/读取,但效率低下,并且无法扩展到更大的字节序列。我想知道是否有一种更简单/算法的方法来进行这种位打包。

你想要什么都可以做,但这取决于某些条件和你认为有效的条件。

首先,如果 2 个数组

始终是 1 512 位和 1 320 位数组,也就是说,如果传递的数组始终是uint64 (&array512bits)[8]uint64 (&array320bits)[5],那么硬编码填充实际上效率要高几个数量级。

但是,如果要考虑较大的字节序列,则可以创建一种算法,该算法将填充考虑在内并相应地移出位,然后遍历较大位数组的uint64值。但是,使用此方法会在程序集中引入增加计算时间的分支(例如 if (total_shifted < bit_size)等)。即使进行了优化,生成的程序集仍然比手动进行移位更复杂,并且执行此操作的代码需要考虑每个数组的大小,以确保它们可以适当地相互适应,从而增加更多的计算时间(或一般代码复杂性)。

例如,请考虑以下手动换档代码:

static void pack512to320_manual(uint64 (&a512)[8], uint64 (&a320)[5])
{
    a320[0] = (
        (a512[0] & 0x00000000000003FF)         | // 10 -> 10
        ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
        ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
        ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
        ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
        ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
        ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
    a320[1] = (
        ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
        ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
        ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
        ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
        ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
        ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
        ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
    a320[2] = (
        ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
        ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
        ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
        ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
        ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
        ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
        ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
        ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
    a320[3] = (
        ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
        ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
        ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
        ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
        ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
        ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
        ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
    a320[4] = (
        ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
        ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
        ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
        ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
        ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
        ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
        ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
}

此代码将仅接受uint64类型的数组,这些数组将在考虑 10 位边界的情况下相互适应并相应地移动,以便将 512 位数组打包到 320 位数组中,因此执行类似 uint64* a512p = a512; pack512to320_manual(a512p, a320); 的操作将在编译时失败,因为a512p不是uint64 (&)[8](即类型安全)。请注意,此代码已完全展开以显示位移序列,但您可以使用#defineenum来避免"幻数"并使代码可能更清晰。

如果要扩展它以考虑更大的字节序列,可以执行以下操作:

template < std::size_t X, std::size_t Y >
static void pack512to320_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])
{
    const uint64* start = array512bits;
    const uint64* end = array512bits + (X-1);
    uint64 tmp = *start;
    uint64 tmask = 0;
    int i = 0, tot = 0, stot = 0, rem = 0, z = 0;
    bool excess = false;
    while (start <= end) {
        while (stot < bit_size) {
            array320bits[i] |= ((tmp & 0x00000000000003FF) << tot);
            tot += 10; // increase shift left by 10 bits
            tmp = tmp >> 16; // shift off 2 bytes
            stot += 16; // increase shifted total
            if ((excess = ((tot + 10) >= bit_size))) { break; }
        }
        if (stot == bit_size) {
            tmp = *(++start); // get next value
            stot = 0;
        }
        if (excess) {
            rem = (bit_size - tot); // remainder bits to shift off
            tot = 0;
            // create the mask
            tmask = 0;
            for (z = 0; z < rem; ++z) { tmask |= (1 << z); }
            // get the last bits
            array320bits[i++] |= ((tmp & tmask) << (bit_size - rem));
            // shift off and adjust
            tmp = tmp >> rem;
            rem = (10 - rem);
            // new mask
            tmask = 0;
            for (z = 0; z < rem; ++z) { tmask |= (1 << z); }
            array320bits[i] = (tmp & tmask);
            tot += rem; // increase shift left by remainder bits
            tmp = tmp >> (rem + 6); // shift off 2 bytes
            stot += 16;
            excess = false;
        }
    }
}

此代码还考虑了字节边界,并将它们打包到 512 位数组中。但是,此代码不会执行任何错误检查以确保大小正确匹配,因此如果X % 8 != 0Y % 5 != 0(其中XY> 0),您可能会得到无效的结果!此外,由于涉及循环、临时和移位,它比手动版本慢得多,而且,与位移版本相比,函数代码的首次阅读者可能需要更多时间来破译循环代码的完整意图和上下文。

如果你想要介于两者之间的东西,你可以使用手动打包功能,以 8 和 5 为一组迭代较大的字节数组,以确保字节正确对齐;类似于以下内容:

template < std::size_t X, std::size_t Y >
static void pack512to320_manual_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])
{
    if (((X == 0) || (X % 8 != 0)) || ((Y == 0) || (Y % 5 != 0)) || ((X < Y) || (Y % X != Y))) {
        // handle invalid sizes how you need here
        std::cerr << "Invalid sizes!" << std::endl;
        return;
    }
    uint64* a320 = array320bits;
    const uint64* end = array512bits + (X-1);
    for (const uint64* a512 = array512bits; a512 < end; a512 += 8) {
        *a320 = (
            (a512[0] & 0x00000000000003FF)         | // 10 -> 10
            ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
            ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
            ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
            ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
            ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
            ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
        ++a320;
        *a320 = (
            ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
            ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
            ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
            ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
            ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
            ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
            ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
        ++a320;
        *a320 = (
            ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
            ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
            ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
            ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
            ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
            ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
            ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
            ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
        ++a320;
        *a320 = (
            ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
            ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
            ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
            ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
            ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
            ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
            ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
        ++a320;
        *a320 = (
            ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
            ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
            ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
            ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
            ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
            ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
            ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
        ++a320;
    }
}

这类似于手动打包功能,只为检查增加了微不足道的时间,但可以处理更大的数组,这些数组将干净地相互打包(再次扩展以显示序列)。

将上述示例与在 i7@2.2GHz 上使用-O3 g++ 4.2.1计时得出以下平均时间:

pack512to320_loop : 0.135 微秒

pack512to320_manual : 0.0017 US

pack512to320_manual_loop : 0.0020 微秒

以下是用于测试输入/输出和一般时序的测试代码:

#include <iostream>
#include <ctime>
#if defined(_MSC_VER)
    #include <cstdint>
    #include <windows.h>
    #define timesruct LARGE_INTEGER
    #define dotick(v) QueryPerformanceCounter(&v)
    timesruct freq;
#else
    #define timesruct struct timespec
    #define dotick(v) clock_gettime(CLOCK_MONOTONIC, &v)
#endif
static const std::size_t bit_size = sizeof(uint64) * 8;
template < std::size_t X, std::size_t Y >
static void pack512to320_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])
{
    const uint64* start = array512bits;
    const uint64* end = array512bits + (X-1);
    uint64 tmp = *start;
    uint64 tmask = 0;
    int i = 0, tot = 0, stot = 0, rem = 0, z = 0;
    bool excess = false;
    // this line is only here for validities sake,
    // it was commented out during testing for performance
    for (z = 0; z < Y; ++z) { array320bits[z] = 0; }
    while (start <= end) {
        while (stot < bit_size) {
            array320bits[i] |= ((tmp & 0x00000000000003FF) << tot);
            tot += 10; // increase shift left by 10 bits
            tmp = tmp >> 16; // shift off 2 bytes
            stot += 16; // increase shifted total
            if ((excess = ((tot + 10) >= bit_size))) { break; }
        }
        if (stot == bit_size) {
            tmp = *(++start); // get next value
            stot = 0;
        }
        if (excess) {
            rem = (bit_size - tot); // remainder bits to shift off
            tot = 0;
            // create the mask
            tmask = 0;
            for (z = 0; z < rem; ++z) { tmask |= (1 << z); }
            // get the last bits
            array320bits[i++] |= ((tmp & tmask) << (bit_size - rem));
            // shift off and adjust
            tmp = tmp >> rem;
            rem = (10 - rem);
            // new mask
            tmask = 0;
            for (z = 0; z < rem; ++z) { tmask |= (1 << z); }
            array320bits[i] = (tmp & tmask);
            tot += rem; // increase shift left by remainder bits
            tmp = tmp >> (rem + 6); // shift off 2 bytes
            stot += 16;
            excess = false;
        }
    }
}
template < std::size_t X, std::size_t Y >
static void pack512to320_manual_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])
{
    if (((X == 0) || (X % 8 != 0)) || ((Y == 0) || (Y % 5 != 0)) || ((X < Y) || (Y % X != Y))) {
        // handle invalid sizes how you need here
        std::cerr << "Invalid sizes!" << std::endl;
        return;
    }
    uint64* a320 = array320bits;
    const uint64* end = array512bits + (X-1);
    for (const uint64* a512 = array512bits; a512 < end; a512 += 8) {
        *a320 = (
            (a512[0] & 0x00000000000003FF)         | // 10 -> 10
            ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
            ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
            ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
            ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
            ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
            ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
        ++a320;
        *a320 = (
            ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
            ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
            ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
            ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
            ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
            ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
            ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
        ++a320;
        *a320 = (
            ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
            ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
            ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
            ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
            ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
            ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
            ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
            ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
        ++a320;
        *a320 = (
            ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
            ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
            ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
            ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
            ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
            ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
            ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
        ++a320;
        *a320 = (
            ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
            ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
            ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
            ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
            ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
            ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
            ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
        ++a320;
    }
}
static void pack512to320_manual(uint64 (&a512)[8], uint64 (&a320)[5])
{
    a320[0] = (
        (a512[0] & 0x00000000000003FF)         | // 10 -> 10
        ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
        ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
        ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
        ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
        ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
        ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
    a320[1] = (
        ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
        ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
        ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
        ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
        ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
        ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
        ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
    a320[2] = (
        ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
        ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
        ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
        ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
        ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
        ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
        ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
        ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
    a320[3] = (
        ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
        ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
        ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
        ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
        ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
        ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
        ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
    a320[4] = (
        ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
        ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
        ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
        ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
        ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
        ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
        ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
}
template < std::size_t N >
static void printit(uint64 (&arr)[N])
{
    for (std::size_t i = 0; i < N; ++i) {
        std::cout << "arr[" << i << "] = " << arr[i] << std::endl;
    }
}
static double elapsed_us(timesruct init, timesruct end)
{
    #if defined(_MSC_VER)
        if (freq.LowPart == 0) { QueryPerformanceFrequency(&freq); }
        return (static_cast<double>(((end.QuadPart - init.QuadPart) * 1000000)) / static_cast<double>(freq.QuadPart));
    #else
        return ((end.tv_sec - init.tv_sec) * 1000000) + (static_cast<double>((end.tv_nsec - init.tv_nsec)) / 1000);
    #endif
}
int main(int argc, char* argv[])
{
    uint64 val = 0x039F039F039F039F;
    uint64 a512[] = { val, val, val, val, val, val, val, val };
    uint64 a320[] = { 0, 0, 0, 0, 0 };
    int max_cnt = 1000000;
    timesruct init, end;
    std::cout << std::hex;
    dotick(init);
    for (int i = 0; i < max_cnt; ++i) {
        pack512to320_loop(a512, a320);
    }
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;
    dotick(init);
    for (int i = 0; i < max_cnt; ++i) {
        pack512to320_manual(a512, a320);
    }
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;
    dotick(init);
    for (int i = 0; i < max_cnt; ++i) {
        pack512to320_manual_loop(a512, a320);
    }
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;
    return 0;
}

同样,这只是通用测试代码,您的结果可能会有所不同。

希望能有所帮助。