找出两条线是否相交

Find out if 2 lines intersect

本文关键字:是否 两条线      更新时间:2023-10-16

可能重复:
如何检测两条线段的相交位置
确定两条线段是否相交?

给定两条线l1=((A0,B0(,(A1,B1((和l2=((A2,B2(,(A3,B3((;Ax、Bx是整数,(Ax、Bx(指定行的开始和结束。

有没有一种算法只使用整数运算来确定l1和l2是否相交?(只需要布尔答案。(

我自己的方法是用定点算法计算交点附近的一个点。然后将溶液(a,b(代入以下方程:

I: abs((A0+a*(A1-A0((-(A2+b*(A3-A2((<公差
II: abs((B0+a*(B1-B0((-(B2+b*(B3-B2((<公差

如果I和II都评估为true,那么我的方法应该返回true。

我的C++-代码:
vec.h

#ifndef __MY_VECTOR__
#define __MY_VECTOR__
#include <stdarg.h>
template<typename VType, unsigned int dim>
class vec {
private:
    VType data[dim];
public:
    vec(){}
    vec(VType v0, ...){
            data[0] = v0;
            va_list l;
            va_start(l, v0);
            for(unsigned int i=1; i<dim; ++i){
                    data[i] = va_arg(l, VType);
            }
            va_end(l);
    }
    ~vec(){}
    VType& operator[](unsigned int i){
            return data[i];
    }
    VType operator[](unsigned int i) const {
            return data[i];
    }};
    template<typename VType, unsigned int dim, bool doDiv>
    vec<VType, dim> helpArith1(const vec<VType, dim>& A, long delta){
            vec<VType, dim> r(A);
            for(unsigned int i=0; i<dim; ++i){
                    r[i] = doDiv ? (r[i] / delta) : (r[i] * delta);
            }
            return r;
    }
    template<typename VType, unsigned int dim>
    vec<VType, dim> operator*(const vec<VType, dim>& v, long delta) {
        return helpArith1<VType, dim, false>(A, delta);
    }
    template<typename VType, unsigned int dim>
    vec<VType, dim> operator*(long delta, const vec<VType, dim>& v){
        return v * delta;
    }
    template<typename VType,unsigned int dim>
    vec<VType, dim> operator/(const vec<VType, dim>& A, long delta) {
        return helpArith1<VType, dim, true>(A, delta);
    }
    template<typename VType, unsigned int dim, bool doSub>
    vec<VType, dim> helpArith2(const vec<VType, dim>& A, const vec<VType, dim>& B){
        vec<VType, dim> r;
        for(unsigned int i=0; i<dim; ++i){
            r[i] = doSub ? (A[i]-B[i]):(A[i]+B[i]);
        }
        return r;
    }
    template<typename VType, unsigned int dim>
    vec<VType, dim> operator+(const vec<VType, dim>& A, const vec<VType, dim>& B){
        return helpArith2<VType, dim, false>(A, B);
    }
    template<typename VType, unsigned int dim>
    vec<VType, dim> operator-(const vec<VType, dim>& A, const vec<VType, dim>& B){
        return helpArith2<VType, dim, true>(A, B);
    }
    template<typename VType, unsigned int dim>
    bool operator==(const vec<VType, dim>& A, const vec<VType, dim>& B) {
            for(unsigned int i==0; i<dim; ++i){
                if(A[i]!=B[i]){
                            return false;
                    }
            }
            return true;
    }
    template<typename VType, unsigned int dim>
    bool operator!=(const vec<VType, dim>& A, const vec<VType, dim>& B) {
            return !(A==B);
    }
    #endif


line.h:

#ifndef __MY_LINE__
#define __MY_LINE__
#include "vec.h"
unsigned long int ggt(unsigned long int A, unsigned long int B) {
    if(A==0) {
        if(B==0) {
            return 1;
        }
        return B;
    }
    while(B!=0) {
        unsigned long int temp = A % B;
        A = B;
        B = temp;
    }
    return A;
}
#define ABS(n) ( ((n)<0) ? (-n) : (n) )
struct line {
    vec<long int, 2> A, B;
    explicit line(long int iA_0, long int iA_1, long int iB_0, long int iB_1) :
        A(vec<long int, 2>(iA_0<<8, iA_1<<8)),
        B(vec<long int, 2>(iB_0<<8, iB_1<<8)){}
    vec<long int, 2> slope() const{
        vec<long int, 2> temp = A-B;
        if(temp[0]<0) {
            temp[0] = -1 * temp[0];
            temp[1] = -1 * temp[1];
        }
        return temp/ggt(ABS(temp[0]), ABS(temp[1]));
    }
};
bool intersect(line l1, line l2) {
    const long int epsilon = 1<<4;
    vec<long int, 2> sl1 = l1.slope(), sl2 = l2.slope();
    // l2.A + b*sl2 = l1.A + a*sl1
    // <=> l2.A - l1.A = a*sl1 - b*sl2  // = (I, II)^T
    // I': sl2[1] * I; II': sl2[0] * II
    vec<long int, 2> L = l2.A - l1.A, R = sl1;
    L[0] = L[0] * sl2[1];        R[0] = R[0] * sl2[1];
    L[1] = L[1] * sl2[0];        R[1] = R[1] * sl2[0];
    // I' - II'
    long int L_SUB = L[0] - L[1], R_SUB = R[0] - R[1];
    if(ABS(R_SUB) == 0) {
        return ABS(L_SUB) == 0;
    }
    long int temp = ggt(ABS(L_SUB), ABS(R_SUB));
    L_SUB /= temp; R_SUB /= temp;
    // R_SUB * a = L_SUB
    long int a = L_SUB/R_SUB, b = ((l1.A[0] - l2.A[0])*R_SUB + L_SUB * sl1[0])/R_SUB;
    // if the given lines intersect, then {a, b} must be the solution of
    // l2.A - l1.A = a*sl1 - b*sl2
    L = l2.A - l1.A;
    long x = ABS((L[0]- (a*sl1[0]-b*sl2[0]))), y = ABS((L[1]- (a*sl1[1]-b*sl2[1])));
    return x<epsilon && y < epsilon;
}
#endif


main.cpp:

#include "line.h"
int main(){
    line A(0, 0, 6, 0), B(3, 3, 4, -3);
    bool temp = intersect(A, B);
    return 0;
}

(我不确定我的intersect函数是否适用于所有行,但根据我迄今为止使用的测试数据,它返回了正确的结果。(

这是可能的。我们想检查l1的两个端点是否在l2的不同侧,以及l2的两个终点是否在l1的相对侧。

为了检查点(a,B(位于l1=((A0,B0(,(A1,B1((的哪一侧,我们取:

  • 垂直于直线的任意法向量N;一个这样的矢量是(B1-B0,A1-A0(
  • 从直线起点到点(A,B(的矢量P,即(A-A0,B-B0(

然后我们计算点积:

N·p=(A-A0,B-B0(·(B1-B0,A1-A0

我们只对这个符号感兴趣:如果它是正的,那么这个点就在直线的一边;如果是负数,那就是另一个。如您所见,不需要浮点运算。

我们可以利用这样一个事实,即符号相反的数字在相乘时总是负数。因此,确定两条线段((A0,B0(,(A1,B1((和((A2,B2(,(A3,B3((是否相交的完整表达式为:

((A2-A0)*(B1-B0) - (B2-B0)*(A1-A0)) * ((A3-A0)*(B1-B0) - (B3-B0)*(A1-A0)) < 0
&&
((A0-A2)*(B3-B2) - (B0-B2)*(A3-A2)) * ((A1-A2)*(B3-B2) - (B1-B2)*(A3-A2)) < 0

测试代码

一些C++代码来测试上面的计算:

#include <iostream>
#include <cstdlib>
struct Point {
    int x,y;
};
bool isIntersecting(Point& p1, Point& p2, Point& q1, Point& q2) {
    return (((q1.x-p1.x)*(p2.y-p1.y) - (q1.y-p1.y)*(p2.x-p1.x))
            * ((q2.x-p1.x)*(p2.y-p1.y) - (q2.y-p1.y)*(p2.x-p1.x)) < 0)
            &&
           (((p1.x-q1.x)*(q2.y-q1.y) - (p1.y-q1.y)*(q2.x-q1.x))
            * ((p2.x-q1.x)*(q2.y-q1.y) - (p2.y-q1.y)*(q2.x-q1.x)) < 0);
}
int main(int argc, char* argv[]) {
    if(argc != 9) {
        std::cout << "Call as " << argv[0] << " <p1.x> <p1.y> <p2.x> "
                  << "<p2.y> <q1.x> <q1.y> <q2.x> <q2.y>" << std::endl;
        return -1;
    }
    Point p1 = {.x = atoi(argv[1]), .y = atoi(argv[2])};
    Point p2 = {.x = atoi(argv[3]), .y = atoi(argv[4])};
    Point q1 = {.x = atoi(argv[5]), .y = atoi(argv[6])};
    Point q2 = {.x = atoi(argv[7]), .y = atoi(argv[8])};
    if(isIntersecting(p1,p2,q1,q2)) {
        std::cout << "Segments intersect" << std::endl;
        return 1;
    }
    else {
        std::cout << "Segments do not intersect" << std::endl;
        return 0;
    }
}

结果:

$ ./intersection_test 0 0 10 10 0 10 10 0 # example from the comments
Segments intersect
$ ./intersection_test 0 1 2 1 1 2 1 0
Segments intersect
$ ./intersection_test 0 0 0 1 1 1 1 0
Segments do not intersect
$ ./intersection_test 1 1 5 3 3 4 7 2 # q touches but not intersects at p2
Segments do not intersect                             
$ ./intersection_test 1 1 5 3 3 4 6 2
Segments intersect

两条线段相交,当它们的线相交时,每条线段的端点都在另一条线段的对侧。至少在2d。

两条线相交在二维中是一个容易的问题。

点在直线的哪一边也很容易。

两者都不需要非整数数学。

我会估计一些通用几何代码的十几行或三行,然后是6到10行的解决方案?再加上语言样板。还有一些零长度的拐角案例检查。

注意,我在区分线条和线段。