多态lambda的默认参数

Default parameters for polymorphic lambda

本文关键字:参数 默认 lambda 多态      更新时间:2023-10-16

我试图写一个宏,将缩短lambda表达式语法当单个返回语句是它所需要的。我的第一次尝试是这样的:

struct void_t{};                                                                                                                                     
#define LR(EXPR) (auto&& p_1 = void_t{}, auto&& p_2 = void_t{}, auto&& p_3 = void_t{}){ return EXPR; }

不幸的是,它不像我期望的那样工作。默认参数基本上被忽略,我不能用少于三个参数调用这个lambda:

std::cout << []LR(p_1)("test"); // compile error                                                                                                     
std::cout << []LR(p_1 + p_2)(2, 3); // compile error                                                                                                 
std::cout << []LR(p_1 + p_2)(std::string("hello "), std::string(" world!")); // compile error                                                        
std::cout << []LR(p_1 + p_2)(2, 3, 0); // OK                                                                          

我设法设计了一些复杂的解决方案,似乎工作,但它有问题:

template<class LT> struct lambda_wrapper                                        
{                                                                               
    lambda_wrapper(LT p_lambda): m_lambda(p_lambda){}                           
    template<class T1, class T2, class T3>                                      
    auto operator()(T1&& p_1, T2&& p_2, T3&& p_3) const                         
    {                                                                           
        return m_lambda(std::forward<T1>(p_1),                                  
                        std::forward<T2>(p_2),                                  
                        std::forward<T3>(p_3));                                 
    }                                                                           
    template<class T1, class T2> auto operator()(T1&& p_1, T2&& p_2) const      
    {                                                                           
        return m_lambda(std::forward<T1>(p_1), std::forward<T2>(p_2), void_t{});
    }                                                                           
    template<class T1> auto operator()(T1&& p_1) const                          
    {                                                                           
        return m_lambda(std::forward<T1>(p_1), void_t{}, void_t{});             
    }                                                                           
    auto operator()() const                                                     
    {                                                                           
        return m_lambda(void_t{}, void_t{}, void_t{});                          
    }                                                                           
private:                                                                        
    LT m_lambda;                                                                
};                                                                              
template <class LT> lambda_wrapper<LT> operator++(LT&& p_lambda, int)           
{                                                                               
    return {std::forward<LT>(p_lambda)};                                        
}                                                                               
#define LR(EXPR) (auto&& p_1, auto&& p_2, auto&& p_3){ return EXPR; }++         

谁有更好的主意?

基于Daniel的回答,我们可以将元组索引编码为std::integral_constant类型,并使用operator[]模板编写std::tuple的扩展,该模板可以从其参数的类型推断索引:

namespace detail {
    template <typename... Ts> struct tuple : std::tuple<Ts...> {
        using std::tuple<Ts...>::tuple;
        template <typename T> constexpr auto operator[](T)
        -> std::tuple_element_t<T::value, std::tuple<Ts...>>
        { return std::get<T::value>(*this); }
    };
    template <typename... Ts> constexpr tuple<Ts&&...> forward_as_tuple(Ts&&... vs) {
        return tuple<Ts&&...>{ std::forward<Ts>(vs)... };
    }
    namespace placeholders {
        constexpr std::integral_constant<size_t, 0> _0;
        constexpr std::integral_constant<size_t, 1> _1;
        constexpr std::integral_constant<size_t, 2> _2;
        //...
    }
}
#define LR(EXPR) (auto&&... _ps) 
{ using namespace detail::placeholders; auto p = detail::forward_as_tuple(_ps...); return EXPR; }

导致

std::cout << []LR(p[_0])("test");
std::cout << []LR(p[_0] + p[_1])(2, 3); 
std::cout << []LR(p[_0] + p[_1])(std::string("hello "), std::string(" world!"));
<<p> 生活例子/strong>

Update:正如Daniel在注释中提到的,我们可以为每个数量的参数专门化元组类型,为元组元素使用命名别名:

namespace detail {
    template <typename... Ts> struct tuple : std::tuple<Ts...> {
        using std::tuple<Ts...>::tuple;
    };
    template <typename T0> struct tuple<T0> : std::tuple<T0> {
        using std::tuple<T0>::tuple;
        T0&& _0 = std::get<0>(*this);
    };
    template <typename T0, typename T1> struct tuple<T0, T1> : std::tuple<T0, T1> {
        using std::tuple<T0, T1>::tuple;
        T0&& _0 = std::get<0>(*this);
        T1&& _1 = std::get<1>(*this);
    };
    template <typename T0, typename T1, typename T2> struct tuple<T0, T1, T2> : std::tuple<T0, T1, T2> {
        using std::tuple<T0, T1, T2>::tuple;
        T0&& _0 = std::get<0>(*this);
        T1&& _1 = std::get<1>(*this);
        T2&& _2 = std::get<2>(*this);
    };
    //...
    template <typename... Ts> constexpr tuple<Ts&&...> forward_as_tuple(Ts&&... vs) {
        return tuple<Ts&&...>{ std::forward<Ts>(vs)... };
    }
}
#define LR(EXPR) (auto&&... _ps) 
{ auto p = detail::forward_as_tuple(_ps...); return EXPR; }
因此

:

std::cout << []LR(p._0)("test");
std::cout << []LR(p._0 + p._1)(2, 3); 
std::cout << []LR(p._0 + p._1)(std::string("hello "), std::string(" world!"));
<<p> 生活例子/strong>

更通用,但是从表达式内访问元素的语法不太方便:

#define LR(EXPR) (auto&&... ps) 
{ auto p = std::forward_as_tuple(ps...); return EXPR; }

导致

std::cout << []LR(std::get<0>(p))("test");
std::cout << []LR(std::get<0>(p) + std::get<1>(p))(2, 3); 
std::cout << []LR(std::get<0>(p) + std::get<1>(p))(std::string("hello "), std::string(" world!"));
<<p> 生活例子/strong>

更新:基于@Oktalist的答案(+1),还可以使用标准提供的占位符:

#include <iostream>
#include <tuple>
#include <functional>
namespace detail
{
template<typename T>
struct tuple_with_placeholder : T
{
    using T::T;
    template<typename PH>
    auto operator[](PH) const
    {
        return std::get<std::is_placeholder<PH>::value-1>(*this);
    }
};
}
#define LR(EXPR) (auto&&... ps) { 
    detail::tuple_with_placeholder<decltype(std::forward_as_tuple(ps...))> p(ps...); 
    using namespace std::placeholders; 
    return EXPR; 
}
int main()
{
    std::cout << []LR(p[_1])("test");
    std::cout << []LR(p[_1]+p[_2])(2, 3); 
    std::cout << []LR(p[_1]+p[_2])(std::string("hello "), std::string(" world!"));
}
<<p> 生活例子/strong>

基于预处理器的解决方案:

#include <boost/preprocessor/tuple/to_seq.hpp>
#include <boost/preprocessor/seq/for_each.hpp>
#include <boost/preprocessor/seq/cat.hpp>
#include <boost/preprocessor/seq/to_tuple.hpp>
#define _AUTO(_0, _1, name) 
    (auto&& name)
#define _BODY(...) 
    { return __VA_ARGS__; }
#define LR(...) 
    BOOST_PP_SEQ_TO_TUPLE(BOOST_PP_SEQ_FOR_EACH(_AUTO, _, BOOST_PP_TUPLE_TO_SEQ((__VA_ARGS__)))) _BODY
#include <iostream>
int main()
{
    std::cout << []LR(x)(x)("test");                                                                                                   
    std::cout << []LR(x, y)(x + y)(2, 3);                                                                                              
    std::cout << []LR(x, y)(x + y)(std::string("hello "), std::string(" world!"));                                                          
}

根据您的贡献,我提出了以下实现:

namespace detail
{
struct void_t{};
template<int I> struct int_t{};
template<class TT> void_t get_param(void_t, const TT&)
{ 
    return void_t{};
}
template<int I, class TT> auto get_param(int_t<I>, const TT& p_tuple)
-> std::tuple_element_t<I, TT>&
{ 
    return std::get<I>(p_tuple);
}
}
#define LR(EXPR) (auto&&... ps) 
{
    auto p = std::forward_as_tuple(ps...);
    auto&& p_1 = get_param(std::conditional_t<sizeof...(ps) >= 1,
                                              detail::int_t<0>,
                                              detail::void_t>{}, p);
    auto&& p_2 = get_param(std::conditional_t<sizeof...(ps) >= 2,
                                              detail::int_t<1>,
                                              detail::void_t>{}, p);
    auto&& p_3 = get_param(std::conditional_t<sizeof...(ps) >= 3,
                                              detail::int_t<2>,
                                              detail::void_t>{}, p);
    return EXPR;
}
int main()
{
    std::cout << []LR(p_1)("test ", "test2");
    std::cout << []LR(p_1 + p_2)(std::string("Hallo "), std::string("World! "));
    int l_1 = 4;
    std::cout << [=]LR(p_1 + p_2 + p_3 + l_1)(1, 2, 3);
    std::cout << []LR(std::get<3>(p))(1, 2, 3, 4);    
}

有人能看出这有什么问题吗?