控制多个可变参数包的解包,以获得更高级的tuple_for_each

Controlling the unpacking of multiple variadic parameter packs for a fancier tuple_for_each

本文关键字:tuple each for 高级的 变参 参数 控制      更新时间:2023-10-16

背景/动机

我一直在玩VC++2015,研究一些编写实用程序例程的方法来处理元组和其他可变参数

我感兴趣的第一个函数是公共或花园tuple_for_all函数。对于函数f和元组t依次调用f(get<0>(t)f(get<1>(t)等。

到目前为止,如此简单。

template<typename Tuple, typename Function, std::size_t... Indices>
constexpr void tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>) {
    using swallow = int[];
    static_cast<void>(swallow{ 0, (std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))), void(), 0)... });
}
template<typename Function, typename Tuple>
constexpr void tuple_for_each(Function&& f, Tuple&& t) {
    return tuple_for_each_aux(std::forward<Function>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

好的,这有效(模化在削减它时发生的任何编译和复制/粘贴错误(。

但我的下一个想法是,在某些情况下,Function可能会返回一个有用/有趣的值,所以我们应该捕获它。天真地,我们可以做这样的事情:

template<typename Tuple, typename Function, std::size_t... Indices>
constexpr auto tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>) {
    return std::make_tuple(std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t)));
}
template<typename Function, typename Tuple>
constexpr auto tuple_for_each(Function&& f, Tuple&& t) {
    return tuple_for_each_aux(std::forward<Function>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

当函数确实返回值时,这非常有用,但是由于void令人讨厌地退化并且我们无法进行std::tuple<void>,因此它不适用于void返回函数。我们不能直接按返回类型重载,但C++为我们提供了处理此问题的工具,使用 SFINAE:

template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuple>>)>>::value>>
constexpr void tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>) {
    using swallow = int[];
    static_cast<void>(swallow{ 0, (std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))), void(), 0)... });
}
template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<!std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuple>>)>>::value>>
constexpr decltype(auto) tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>) {
    return std::make_tuple(std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t)))...);
}
template<typename Function, typename Tuple>
constexpr decltype(auto) tuple_for_each(Function&& f, Tuple&& t) {
    return tuple_for_each_aux(std::forward<Function>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

这已经足够好了。如果两者之间的计算顺序一致(void版本是从左到右,值返回版本由编译器决定,所以可能是从右到左(,那就太好了。我们可以通过避免调用std::make_tuple而是大括号初始化std::tuple来解决此问题。我不知道是否有比decltype(std::make_tuple(...))更好的东西来构建正确的类型。可能有。

template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuple>>)>>::value>>
constexpr void tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>)
{
    using swallow = int[];
    static_cast<void>(swallow{ 0, (std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))), void(), 0)... });
}
template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<!std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuple>>)>>::value>>
constexpr decltype(auto) tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>)
{
    return decltype(std::make_tuple(std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t)))...)){std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))) ...};
}
template<typename Tuple, typename Function>
constexpr decltype(auto) tuple_for_each(Function&& f, Tuple&& t)
{
    return tuple_for_each_aux(std::forward<Function>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

(顺便说一下,VC++ 2015 现在似乎被窃听了;即使对于大括号的初始值设定项,它仍然没有使用从左到右的评估,因为优化器团队似乎认为它并不重要(

我对std::enable_if_t检查更感兴趣。我们不检查函数是否为元组中的每种类型返回非void,只返回第一种类型。但实际上,它应该是全有或全无。哥伦布的all_true技术为我们解决了这个问题:

template <bool...> struct bool_pack;
template <bool... v>
using all_true = std::is_same<bool_pack<true, v...>, bool_pack<v..., true>>;
template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<all_true<std::is_void<std::result_of_t<Function(std::tuple_element_t<Indices, std::decay_t<Tuple>>)>>::value...>::value>>
constexpr void tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>)
{
    using swallow = int[];
    static_cast<void>(swallow{ 0, (std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))), void(), 0)... });
}
template<typename Function, typename Tuple, std::size_t... Indices, typename = std::enable_if_t<!std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuple>>)>>::value>>
constexpr decltype(auto) tuple_for_each_aux(Function&& f, Tuple&& t, std::index_sequence<Indices...>)
{
    return decltype(std::make_tuple(std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t)))...)){std::forward<Function>(f)(std::get<Indices>(std::forward<Tuple>(t))) ...};
}
template<typename Function, typename Tuple>
constexpr decltype(auto) tuple_for_each(Function&& f, Tuple&& t)
{
    return tuple_for_each_aux(std::forward<Function>(f), std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

问题

但这里有一点很棘手。虽然tuple_for_each很好,很有用,但我想,如果我给它加一点趣味呢?tuple_for_each取函数f和元组t0t1等并计算f(get<0>(t0), get<0>(t1)...)f(get<1>(t0), get<1>(t1)...)等怎么样?

天真地,我们想做这样的事情:

    using swallow = int[];
    static_cast<void>(swallow{ 0, ((std::forward<Function>(f)(std::get<Indices>(std::forward<Tuples>(ts))...)), void(), 0)... });

天真地,我们希望第一个...扩展Tuples,第二个...扩展Indices。但参数包扩展不提供这种控制。如果...前面的表达式包含多个参数包,则...会尝试并行解压缩所有这些参数包(VC++;它会发出编译器错误,指出它们的长度不同(,或者根本找不到参数包(g++;它会发出没有包的编译器错误(。

幸运的是,可以使用额外的间接层来处理这种情况,以分离出扩展:

template <bool...> struct bool_pack;
template <bool... v>
using all_true = std::is_same<bool_pack<true, v...>, bool_pack<v..., true>>;
template<size_t N, typename Function, typename... Tuples, typename = std::enable_if_t<std::is_void<std::result_of_t<Function(std::tuple_element_t<N, std::decay_t<Tuples>>...)>>::value>>
constexpr void tuple_for_each_aux(Function&& f, Tuples&&... ts)
{
    return std::forward<Function>(f)(std::get<N>(std::forward<Tuples>(ts))...);
}
template<typename Function, typename... Tuples, std::size_t... Indices, typename = std::enable_if_t<all_true<std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuples>>...)>>::value>::value>>
constexpr void tuple_for_each_aux(Function&& f, std::index_sequence<Indices...>, Tuples&&... ts)
{
    using swallow = int[];
    static_cast<void>(swallow{ 0, (tuple_for_each_aux<Indices>(std::forward<Function>(f), std::forward<Tuples>(ts)...), void(), 0)... });
}
template<std::size_t N, typename Function, typename... Tuples, typename = std::enable_if_t<!std::is_void<std::result_of_t<Function(std::tuple_element_t<N, std::decay_t<Tuples>>...)>>::value>>
constexpr decltype(auto) tuple_for_each_aux(Function&& f, Tuples&&... ts)
{
    return std::forward<Function>(f)(std::get<N>(std::forward<Tuples>(ts))...);
}
template<typename Function, typename... Tuples, std::size_t... Indices, typename = std::enable_if_t<all_true<!std::is_void<std::result_of_t<Function(std::tuple_element_t<0, std::decay_t<Tuples>>...)>>::value>::value>>
constexpr decltype(auto) tuple_for_each_aux(Function&& f, std::index_sequence<Indices...>, Tuples&&... ts)
{
    return decltype(std::make_tuple(tuple_for_each_aux<Indices>(std::forward<Function>(f), std::forward<Tuples>(ts)...)...)) { tuple_for_each_aux<Indices>(std::forward<Function>(f), std::forward<Tuples>(ts)...)... };
}
template<typename Function, typename Tuple, typename... Tuples>
constexpr decltype(auto) tuple_for_each(Function&& f, Tuple&& t, Tuples&&... ts)
{
    return tuple_for_each_aux(std::forward<Function>(f), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{}, std::forward<Tuple>(t), std::forward<Tuples>(ts)...);
}

这工作正常...除了。。。那些讨厌的enable_ifs。我不得不削弱它们,回到只测试元组中的第一个元素。现在,这不是一场彻底的灾难,因为最里面的扩展可以执行检查。但这并不好。请考虑以下事项:

struct functor
{
    int operator()(int a, int b) { return a + b; }
    double operator()(double a, double b) { return a + b; }
    void operator()(char, char) { return;  }
};
int main()
{
    auto t1 = std::make_tuple(1, 2.0, 'a');
    auto t2 = std::make_tuple(2, 4.0, 'b');
    tuple_for_each(functor{}, t1, t2);
    return 0;
}

functor对象需要强制使用 void 路径,因为第三个元组元素上的求值函数返回 void 。但是我们的启用检查只查看第一个元素。而且由于故障发生在SFINAE驱动的"过载"解决方案之后,SFINAE无法在这里拯救我们。

但同样,我们不能双重解压缩enable_if_t表达式,原因与调用函数时无法解压缩的原因相同:参数包扩展感到困惑并尝试同时迭代两者。

这就是我解开的地方。我需要在道德上等同于用于调用函数的间接寻址,但我无法立即看到如何编写该间接寻址以使其实际工作。

有什么建议吗?

类型的持有者:

template<class...> class typelist {};

一个别名模板,用于计算将F应用于Tuples中每个元组的第I个元素的结果:

template<class F, std::size_t I, class...Tuples>
using apply_result_type = decltype(std::declval<F>()(std::get<I>(std::declval<Tuples>())...));

现在计算结果类型的列表:

template<class F, std::size_t...Is, class... Tuples>
typelist<apply_result_type<F, Is, Tuples...>...> 
        compute_result_types(typelist<F, Tuples...>, std::index_sequence<Is...>);
template<class F, std::size_t Size, class... Tuples>
using result_types = decltype(compute_result_types(typelist<F, Tuples...>(),
                                                   std::make_index_sequence<Size>()));

并检查字体表中是否没有void

template<class... Ts>
all_true<!std::is_void<Ts>::value...> do_is_none_void(typelist<Ts...>);
template<class TL>
using has_no_void_in_list = decltype(do_is_none_void(TL()));

最后是实际的SFINAE(仅显示一个(:

template<typename Function, typename... Tuples, std::size_t... Indices,
         typename = std::enable_if_t<!has_no_void_in_list<result_types<Function,
                                                                       sizeof...(Indices),
                                                                       Tuples...>>{}>>
constexpr void tuple_for_each_aux(Function&& f, std::index_sequence<Indices...>, 
                                  Tuples&&... ts)
{
    using swallow = int[];
    static_cast<void>(swallow{ 0, (tuple_for_each_aux<Indices>(std::forward<Function>(f), std::forward<Tuples>(ts)...), void(), 0)... });
}

演示。