自定义容器的自定义迭代器

custom iterator for custom container

本文关键字:自定义 迭代器      更新时间:2023-10-16

我正在设计一个容器,它是一个网格,表示为一个1D数组(模板)。我在这里张贴的代码摘录,实际上有更多的。它在机器人应用中用作滚动占用网格,其中每个单元代表世界的一小块区域。

对于这个网格,我经常做的一个操作是遍历所有单元格并检索它们的世界坐标:

for( unsigned r=0; r<mygrid.rows_; ++r ) {
  for( unsigned c=0; c<mygrid.cols_; ++c ) {
    cell = mygrid.getRC(r,c);
    mygrid.rcToXY(r,c,&x,&y);
  }
}

我希望有一个迭代器来存储所有这些:单元格,它的rc坐标和xy坐标。

for( Grid<CellType>::const_iterator it=mygrid.begin(); it!=mygrid.end(); ++it ) {
  cell = *it;
  printf("%d %d %f %fn", it.r(), it.c(), it.x(), it.y());
}

在大量的答案和在线教程之后,我想出了下面的实现,它是有效的。然而,它似乎有点笨拙,对我来说,为了学术的缘故,我想让它看起来更好。而且STL的兼容性也会很好。

template <class G, typename C>
class base_iterator
{
private:
  G* grid_;
  C* cell_;
  unsigned r_, c_;  // local
  double  x_, y_;
// this should be private with access for friends (Grid) only
// but I can't make it work
public:
  base_iterator(G* grid, unsigned r, unsigned c) : grid_(grid), r_(r), c_(c)
  {
    cell_ = ( r<grid->rows_ && c<grid->cols_ ) ? &grid_->getRC(r,c) : 0;
    grid_->rcToXY(r,c,&x_,&y_);
  }

public:
  base_iterator() : grid_(0) { }
  // used to cast an iterator to a const_iterator
  template <class G2, typename C2>
  base_iterator(const base_iterator<G2,C2>& other)
  {
    grid_ = other.grid();
    cell_ = & other.cell();
    r_ = other.r();
    c_ = other.c();
    x_ = other.x();
    y_ = other.y();
  }
  // this should be private with access for friends only
  G* grid() const { return grid_; }
  C& cell() { return *cell_; }
  const C& cell() const { return *cell_; }
  unsigned r() const { return r_; }
  unsigned c() const { return c_; }
  double  x() const { return x_; }
  double  y() const { return y_; }
  C* operator->() { return cell_; }
  const C* operator->() const { return cell_; }
  C& operator*() { return *cell_; }
  const C& operator*() const { return *cell_; }
  //prefix
  base_iterator & operator++()
  {
    // my iteration logic here which needs access to grid
    // in order to find the number of rows, etc.
    return *this;
  }
  //postfix
  base_iterator operator++(int)
  {
    base_iterator it(*this);   // make a copy for result
     ++(*this);              // Now use the prefix version to do the work
     return it;          // return the copy (the old) value.
  }
  template <class G2, typename C2>
  bool operator==(const base_iterator<G2,C2> & other) const
  {
    return cell_ == &other.cell();
  }
  template <class G2, typename C2>
  bool operator!=(const base_iterator<G2,C2>& other) const
  { return cell_!=other.cell(); }
};

然后在我的网格类中:

  typedef base_iterator<Grid<T>,T> iterator;
  typedef base_iterator<Grid<T> const, T const> const_iterator;
  iterator begin() { return iterator(this,0,0); }
  iterator end() { return iterator(this,rows_,cols_); }
  const_iterator begin() const { return const_iterator(this,0,0); }
  const_iterator end() const { return const_iterator(this,rows_,cols_); }

同样,这可以工作,但我觉得它有点笨拙(参见迭代器代码中的注释),我想知道如何改进它。我看到了许多关于使用boost迭代器facade或适配器的帖子,但我不知道如何使其适应我的情况。

我找到了一个解决方案,我很满意。这里是完整的清单供参考。有一些棘手的部分花了我一些时间,特别是为了能够在类声明之外实现。我还没有设法使类base_iterator一个非嵌套类的网格,根据我读这里和那里,我认为这是不可能的。

#include <cstdio>
#include <cassert>
#include <stdexcept>
#include <algorithm>

template <class T>
class Grid
{
public:
  // these should be private, with public getters...
  double resolution_;
  unsigned rows_, cols_;
  int map_r0_, map_c0_; // grid coordinates of origin of map
private:
  T* cell_;
public:
  Grid(double resolution, unsigned rows, unsigned cols);
  ~Grid() { delete[] cell_; }
  T & getRC(unsigned r, unsigned c);
  const T & getRC(unsigned r, unsigned c) const;
  void rcToXY(unsigned r, unsigned c, double* x, double* y) const;
public:
  template <class GridType, class CellType>
  class base_iterator : std::iterator<std::forward_iterator_tag, CellType>
  {
  private:
    friend class Grid;
    GridType* grid_;
    CellType* cell_;
    unsigned r_, c_;  // local
    double  x_, y_;
    base_iterator(GridType* grid, unsigned r, unsigned c);
  public:
    base_iterator() : grid_(0) { }
    template <class G2, class C2>
    base_iterator(const base_iterator<G2,C2>& other);
    CellType& cell() { return *cell_; }
    const CellType& cell() const { return *cell_; }
    unsigned r() const { return r_; }
    unsigned c() const { return c_; }
    double  x() const { return x_; }
    double  y() const { return y_; }
    CellType* operator->() { return cell_; }
    const CellType* operator->() const { return cell_; }
    CellType& operator*() { return *cell_; }
    const CellType& operator*() const { return *cell_; }
    //prefix
    base_iterator & operator++();
    //postfix
    base_iterator operator++(int);
    template <class G2, class C2>
    bool operator==(const base_iterator<G2,C2> & other) const
    { return cell_ == other.cell_; }
    template <class G2, class C2>
    bool operator!=(const base_iterator<G2,C2>& other) const
    { return cell_ != other.cell_; }
  };
  typedef base_iterator<Grid<T>,T> iterator;
  typedef base_iterator<Grid<T> const, T const> const_iterator;
  iterator begin() { return iterator(this,0,0); }
  iterator end() { return iterator(this,rows_,0); }
  const_iterator begin() const { return const_iterator(this,0,0); }
  const_iterator end() const { return const_iterator(this,rows_,0); }
};

template <class T>
Grid<T>::Grid(double resolution, unsigned rows, unsigned cols)
  : resolution_(resolution), rows_(rows), cols_(cols), map_r0_(0), map_c0_(0)
{
  cell_ = new T[rows_*cols_];
}
template <class T>
T & Grid<T>::getRC(unsigned r, unsigned c)
{
  if (r >= rows_ || c >= cols_)
    throw std::runtime_error("Out of bounds");
  return cell_[r * cols_ + c];
}
template <class T>
const T & Grid<T>::getRC(unsigned r, unsigned c) const
{
  if (r >= rows_ || c >= cols_)
    throw std::runtime_error("Out of bounds");
  return cell_[r * cols_ + c];
}
template <class T>
void Grid<T>::rcToXY(unsigned r, unsigned c, double* x, double* y) const
{
  *x = (map_c0_ + c + 0.5) * resolution_;
  *y = (map_r0_ + r + 0.5) * resolution_;
}

template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType>::base_iterator(GridType* grid, unsigned r, unsigned c)
: grid_(grid), r_(r), c_(c)
{
  if( r<grid->rows_ && c<grid->cols_ ) {
    cell_ = &grid_->getRC(r,c);
    grid_->rcToXY(r,c,&x_,&y_);
  }
  else
    cell_ = &grid_->getRC(grid->rows_-1,grid->cols_-1) + 1;
}
// beautiful triple template declaration !
template <class T>
template <class GridType, class CellType>
template <class G2, class C2>
Grid<T>::base_iterator<GridType,CellType>::base_iterator(const Grid<T>::base_iterator<G2,C2>& other)
{
  grid_ = other.grid_;
  cell_ = other.cell_;
  r_ = other.r();
  c_ = other.c();
  x_ = other.x();
  y_ = other.y();
}
template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType> & Grid<T>::base_iterator<GridType,CellType>::operator++()
{
  assert( grid_!=0 );
  if( c_==grid_->cols_-1 )
  {
    c_ = 0;
    x_ = (grid_->map_c0_ + 0.5) * grid_->resolution_;
    ++r_;
    y_ += grid_->resolution_;
  }
  else
  {
    ++c_;
    x_ += grid_->resolution_;
  }
  ++cell_;
  return *this;
}
template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType> Grid<T>::base_iterator<GridType,CellType>::operator++(int)
{
  base_iterator it(*this);   // make a copy for result
   ++(*this);              // Now use the prefix version to do the work
   return it;          // return the copy (the old) value.
}
void print(unsigned i)
{
  printf("%d ", i);
}
int main()
{
  Grid<unsigned> mygrid(.1,2,3);
  unsigned ctr=0;
  for( Grid<unsigned>::iterator it=mygrid.begin(); it!=mygrid.end(); ++it )
    *it = ctr++;
  ctr = 0;
  printf("All elements: r, c, x, y, valuen");
  for( Grid<unsigned>::const_iterator it=mygrid.begin(); it!=mygrid.end(); ++it ) {
    assert( *it == ctr++ );
    printf("%d %d %f %f %dn", it.r(), it.c(), it.x(), it.y(), *it);
  }
  printf("All elements values: ");
  std::for_each(mygrid.begin(), mygrid.end(), print);
  printf("n");
  return 0;
}