如何使用std::实验::simd

How to use std::experimental::simd?

本文关键字:实验 simd std 何使用      更新时间:2023-10-16

我试着做github std::simd上给出的例子,但我的矢量化版本最终慢了2-3倍。如何正确使用它?

文件似乎缺乏,没有足够的例子。没有列出构造函数等。我确信我可能用错了方法,但由于文档有限,我不知道如何继续。

g++-o测试.cpp--std=c++2a-O0

#include <array>
#include <chrono>
#include <cstdlib>
#include <experimental/simd>
#include <iostream>
#include <random>
using std::experimental::native_simd;
using Vec3D_v = std::array<native_simd<float>, 3>;
native_simd<float> scalar_product(const Vec3D_v& a, const Vec3D_v& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
using Vec3D = std::array<float, 3>;
float scalar_product(const std::array<float, 3>& a, const std::array<float, 3>& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
int main(){
constexpr std::size_t VECREG_SIZE = native_simd<float>::size();
std::array<Vec3D, VECREG_SIZE * 1000> arr;
std::array<Vec3D_v, VECREG_SIZE * 1000> arr_v;
std::random_device rd;
std::mt19937 generator(rd());
std::uniform_real_distribution<float> distribution(0.f, 1.f);
for( std::size_t i = 0; i < arr.size(); ++i ){
arr[i] = {distribution(generator), distribution(generator), distribution(generator)};
arr_v[i] = {distribution(generator), distribution(generator), distribution(generator)};
}
float result = 0.f;
auto start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr_v[i-1], arr_v[i])[0];
}
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = end - start;
std::cout << "VC: " << elapsed.count() << 'n' << std::endl;
result = 0;
start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr[i-1], arr[i]);
}
end = std::chrono::high_resolution_clock::now();
elapsed = end - start;
std::cout << "notVC: " << elapsed.count() << 'n';
return EXIT_SUCCESS;
}

问题1:使用SIMD指令时会产生初始成本。拿你的代码,循环三次(我用-O3编译,打印result,否则大部分代码都会被删除(:

$ ./test
VC: 37240 (result: 5986.1)
notVC: 18668 (result: 5983.29)
VC: 26177 (result: 5986.1)
notVC: 18516 (result: 5983.29)
VC: 25895 (result: 5986.1)
notVC: 18083 (result: 5983.29)

_v版本的主循环组件现在为:

1840:       c5 fc 28 d5             vmovaps %ymm5,%ymm2
1844:       c5 fc 28 28             vmovaps (%rax),%ymm5
1848:       c5 fc 28 cc             vmovaps %ymm4,%ymm1
184c:       c5 fc 28 c3             vmovaps %ymm3,%ymm0
1850:       c5 fc 28 60 20          vmovaps 0x20(%rax),%ymm4
1855:       c5 fc 28 58 40          vmovaps 0x40(%rax),%ymm3
185a:       48 83 c0 60             add    $0x60,%rax
185e:       c5 d4 59 d2             vmulps %ymm2,%ymm5,%ymm2
1862:       c4 e2 6d 98 cc          vfmadd132ps %ymm4,%ymm2,%ymm1
1867:       c4 e2 75 98 c3          vfmadd132ps %ymm3,%ymm1,%ymm0
186c:       c5 ca 58 f0             vaddss %xmm0,%xmm6,%xmm6
1870:       48 39 d8                cmp    %rbx,%rax
1873:       75 cb                   jne    1840 <main+0x6f0>

问题2:在循环的每一圈,您都可以使用[0]运算符将native_simd<float>结果转换为float。这可能会产生可怕的后果,但编译器足够聪明,不会这样做,正如上面的程序集所示。

问题3:正如我们所看到的,native只是指示编译器将值放入SIMD寄存器中。这样做没有多大好处:这里的多数据方面在哪里?您要做的是将您的3D向量打包到一个SIMD寄存器中,并重写循环以将标量乘积的每个维度累积到一个组件中。最后,你会得到所有组件的总和:

using std::experimental::fixed_size_simd;
using Vec3D_v = fixed_size_simd<float, 3>;

for( std::size_t i = 1; i < arr.size(); ++i ){
result_v += arr_v[i-1] * arr_v[i];
}
float result = std::experimental::reduce (result_v);

运行这个,我们有:

$ ./test
VC: 14958 (result: 2274.7)
notVC: 5279 (result: 2274.7)
VC: 4718 (result: 2274.7)
notVC: 5177 (result: 2274.7)
VC: 4720 (result: 2274.7)
notVC: 5132 (result: 2274.7)

主回路的组装就是一个美丽的部分:

1588:       c5 f8 28 d0             vmovaps %xmm0,%xmm2
158c:       c5 f8 28 00             vmovaps (%rax),%xmm0
1590:       48 83 c0 10             add    $0x10,%rax
1594:       c4 e2 79 b8 ca          vfmadd231ps %xmm2,%xmm0,%xmm1
1599:       48 39 c3                cmp    %rax,%rbx
159c:       75 ea                   jne    1588 <main+0x438>

这里,每个%xmm寄存器同时保存3个浮点值。此外,编译器对第二个循环进行了大量优化,以使用AVX指令,因此增益并不那么重要(但仍然存在!(。


完整代码:

#include <array>
#include <chrono>
#include <cstdlib>
#include <experimental/simd>
#include <iostream>
#include <random>
using std::experimental::fixed_size_simd;
using Vec3D_v = fixed_size_simd<float, 3>;
using Vec3D = std::array<float, 3>;
float scalar_product (const std::array<float, 3> &a, const std::array<float, 3> &b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
int main () {
constexpr std::size_t VECREG_SIZE = fixed_size_simd<float, 3>::size ();
std::array<Vec3D, VECREG_SIZE * 1000> arr;
std::array<Vec3D_v, VECREG_SIZE * 1000> arr_v;
std::random_device rd;
std::mt19937 generator (rd ());
std::uniform_real_distribution<float> distribution (0.f, 1.f);
for (std::size_t i = 0; i < arr.size (); ++i) {
arr[i] = {distribution (generator), distribution (generator), distribution (generator) };
for (int j = 0; j < 3; ++j)
arr_v[i][j] = arr[i][j];
}
Vec3D_v result_v;
for (int iter = 0; iter < 3; ++iter) {
for (int j = 0; j < 3; ++j)
result_v[j] = 0.f;
auto start = std::chrono::high_resolution_clock::now ();
for (std::size_t i = 1; i < arr.size (); ++i) {
result_v += arr_v[i - 1] * arr_v[i];
}
float result = std::experimental::reduce (result_v);
auto end = std::chrono::high_resolution_clock::now ();
auto elapsed = end - start;
std::cout << "VC: " << elapsed.count () << " (result: " << result << ")" << std::endl;
result = 0;
start = std::chrono::high_resolution_clock::now ();
for (std::size_t i = 1; i < arr.size (); ++i) {
result += scalar_product (arr[i - 1], arr[i]);
}
end = std::chrono::high_resolution_clock::now ();
elapsed = end - start;
std::cout << "notVC: " << elapsed.count () << " (result: " << result << ")" << std::endl;
}
return EXIT_SUCCESS;
}