Vulkan 映像布局不会在管道屏障中过渡

Vulkan image layout not transitioning in pipeline barrier

本文关键字:管道 映像 布局 Vulkan      更新时间:2023-10-16

我将 Vulkan 简介 - 教程 02 的大部分内容从 C++ 移植到单个 Rust 函数中以保持简单。该函数通过 ash 提供的 Rust FFI 调用 Vulkan。

我在使管道屏障和信号量正常运行时遇到问题。据我所知,此代码似乎创建了与C++代码相同的验证调试日志信息。

当我在启用验证层的情况下运行C++代码时,vkQueueSubmit成功。当我运行下面的 Rust 函数(启用验证层)时,queue_submit失败并且我收到

无法使用图像 (0x6) 提交 cmd 缓冲区 [子资源:方面掩码 0x1阵列层 0,MIP 级别 0],布局VK_IMAGE_LAYOUT_UNDEFINED 首次使用时VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL。

。这对我来说意味着图像布局转换没有发生,因此我配置/提交管道屏障的方式可能存在问题。

#[macro_use]
extern crate ash;
extern crate kernel32;
extern crate winit;
use std::default::Default;
use std::ffi::{CStr, CString};
use std::ptr;
use ash::vk;
use ash::Entry;
use ash::extensions::{DebugReport, Surface, Swapchain, Win32Surface};
use ash::version::{DeviceV1_0, EntryV1_0, InstanceV1_0};
use winit::os::windows::WindowExt;
unsafe extern "system" fn vulkan_debug_callback(
_: vk::DebugReportFlagsEXT,
_: vk::DebugReportObjectTypeEXT,
_: vk::uint64_t,
_: vk::size_t,
_: vk::int32_t,
_: *const vk::c_char,
p_message: *const vk::c_char,
_: *mut vk::c_void,
) -> u32 {
println!("{:?}", CStr::from_ptr(p_message));
1
}
fn main() {
let mut events_loop = winit::EventsLoop::new();
let window_width = 1024;
let window_height = 768;
let window = winit::WindowBuilder::new()
.with_title("Example")
.with_dimensions(window_width, window_height)
.build(&events_loop)
.unwrap();
unsafe {
let entry = Entry::new().unwrap();
let name = CString::new("Example").unwrap();
let name_raw = name.as_ptr();
let app_info = [
vk::ApplicationInfo {
s_type: vk::StructureType::ApplicationInfo,
p_next: ptr::null(),
p_application_name: name_raw,
application_version: 0,
p_engine_name: name_raw,
engine_version: 0,
api_version: vk_make_version!(1, 0, 36),
},
];
let layer_names = [CString::new("VK_LAYER_LUNARG_standard_validation").unwrap()];
let layer_names_raw: Vec<*const i8> = layer_names.iter().map(|x| x.as_ptr()).collect();
let extension_names_raw = vec![
Surface::name().as_ptr(),
Win32Surface::name().as_ptr(),
DebugReport::name().as_ptr(),
];
let create_info = vk::InstanceCreateInfo {
s_type: vk::StructureType::InstanceCreateInfo,
p_next: ptr::null(),
flags: Default::default(),
p_application_info: app_info.as_ptr(),
pp_enabled_layer_names: layer_names_raw.as_ptr(),
enabled_layer_count: layer_names_raw.len() as u32,
pp_enabled_extension_names: extension_names_raw.as_ptr(),
enabled_extension_count: extension_names_raw.len() as u32,
};
let instance = entry.create_instance(&create_info, None).unwrap();
let debug_info = vk::DebugReportCallbackCreateInfoEXT {
s_type: vk::StructureType::DebugReportCallbackCreateInfoExt,
p_next: ptr::null(),
flags: vk::DEBUG_REPORT_ERROR_BIT_EXT | vk::DEBUG_REPORT_WARNING_BIT_EXT |
vk::DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT |
vk::DEBUG_REPORT_INFORMATION_BIT_EXT |
vk::DEBUG_REPORT_DEBUG_BIT_EXT,
pfn_callback: vulkan_debug_callback,
p_user_data: ptr::null_mut(),
};
let debug_report_loader = DebugReport::new(&entry, &instance).unwrap();
let debug_callback = debug_report_loader
.create_debug_report_callback_ext(&debug_info, None)
.unwrap();
let surface_loader = Surface::new(&entry, &instance).unwrap();
let win32_create_info = vk::Win32SurfaceCreateInfoKHR {
s_type: vk::StructureType::Win32SurfaceCreateInfoKhr,
p_next: ptr::null(),
flags: Default::default(),
hinstance: kernel32::GetModuleHandleW(ptr::null()) as *mut _,
hwnd: window.get_hwnd() as *mut _,
};
let surface = Win32Surface::new(&entry, &instance)
.unwrap()
.create_win32_surface_khr(&win32_create_info, None)
.unwrap();
let (physical_device, graphics_queue_family_index, present_queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.iter()
.filter_map(|&p| {
let candidates =
instance
.get_physical_device_queue_family_properties(p)
.iter()
.enumerate()
.filter_map(|(index, info)| {
let has_graphics = info.queue_flags.subset(vk::QUEUE_GRAPHICS_BIT);
let has_present = surface_loader
.get_physical_device_surface_support_khr(p, index as u32, surface);
if has_graphics || has_present {
Some((index as u32, has_graphics, has_present))
} else {
None
}
})
.collect::<Vec<(u32, bool, bool)>>();
match candidates.iter().find(|&x| x.1 && x.2) {
Some(ref both) => Some((p, both.0, both.0)),
None => match candidates.iter().find(|&x| x.1) {
Some(ref graphics) => match candidates.iter().find(|&x| x.2) {
Some(ref present) => Some((p, graphics.0, present.0)),
None => None,
},
None => None,
},
}
})
.nth(0)
.unwrap();
let device_extension_names_raw = [Swapchain::name().as_ptr()];
let queue_priorities = [1.0];
let queue_create_infos = [
vk::DeviceQueueCreateInfo {
s_type: vk::StructureType::DeviceQueueCreateInfo,
p_next: ptr::null(),
flags: Default::default(),
queue_family_index: graphics_queue_family_index,
p_queue_priorities: queue_priorities.as_ptr(),
queue_count: queue_priorities.len() as u32,
},
];
let device_create_info = vk::DeviceCreateInfo {
s_type: vk::StructureType::DeviceCreateInfo,
p_next: ptr::null(),
flags: Default::default(),
queue_create_info_count: 1 as u32,
p_queue_create_infos: queue_create_infos.as_ptr(),
enabled_layer_count: 0,
pp_enabled_layer_names: ptr::null(),
enabled_extension_count: device_extension_names_raw.len() as u32,
pp_enabled_extension_names: device_extension_names_raw.as_ptr(),
p_enabled_features: ptr::null(),
};
let device = instance
.create_device(physical_device, &device_create_info, None)
.unwrap();
let present_queue = device.get_device_queue(present_queue_family_index, 0);
let image_available_semaphore_create_info = vk::SemaphoreCreateInfo {
s_type: vk::StructureType::SemaphoreCreateInfo,
p_next: ptr::null(),
flags: Default::default(),
};
let image_available_semaphore = device
.create_semaphore(&image_available_semaphore_create_info, None)
.unwrap();
let render_complete_semaphore_create_info = vk::SemaphoreCreateInfo {
s_type: vk::StructureType::SemaphoreCreateInfo,
p_next: ptr::null(),
flags: Default::default(),
};
let render_complete_semaphore = device
.create_semaphore(&render_complete_semaphore_create_info, None)
.unwrap();
let swapchain_loader = Swapchain::new(&instance, &device).unwrap();
let pool_create_info = vk::CommandPoolCreateInfo {
s_type: vk::StructureType::CommandPoolCreateInfo,
p_next: ptr::null(),
flags: vk::CommandPoolCreateFlags::empty(),
queue_family_index: present_queue_family_index,
};
device.device_wait_idle().unwrap();
let surface_capabilities = surface_loader
.get_physical_device_surface_capabilities_khr(physical_device, surface)
.unwrap();
let surface_formats = surface_loader
.get_physical_device_surface_formats_khr(physical_device, surface)
.unwrap();
let surface_format =
if surface_formats.len() == 1 && surface_formats[0].format == vk::Format::Undefined {
vk::SurfaceFormatKHR {
format: vk::Format::B8g8r8Unorm,
color_space: surface_formats[0].color_space,
}
} else {
match (surface_formats)
.iter()
.find(|&sf| sf.format == vk::Format::B8g8r8Unorm)
{
Some(sf) => sf.clone(),
None => surface_formats[0].clone(),
}
};
let image_extent = match surface_capabilities.current_extent.width {
std::u32::MAX => vk::Extent2D {
width: window_width,
height: window_height,
},
_ => surface_capabilities.current_extent.clone(),
};
let mut image_count = surface_capabilities.min_image_count + 1;
if surface_capabilities.max_image_count > 0 &&
image_count > surface_capabilities.max_image_count
{
image_count = surface_capabilities.max_image_count;
}
image_count = image_count;
let pre_transform = if surface_capabilities
.supported_transforms
.subset(vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
{
vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR
} else {
surface_capabilities.current_transform
};
let present_modes = surface_loader
.get_physical_device_surface_present_modes_khr(physical_device, surface)
.unwrap();
let present_mode = present_modes
.iter()
.cloned()
.find(|&mode| mode == vk::PresentModeKHR::Fifo)
.unwrap_or(vk::PresentModeKHR::Fifo);
let swapchain_create_info = vk::SwapchainCreateInfoKHR {
s_type: vk::StructureType::SwapchainCreateInfoKhr,
p_next: ptr::null(),
flags: Default::default(),
surface: surface,
min_image_count: image_count,
image_color_space: surface_format.color_space,
image_format: surface_format.format,
image_extent: image_extent,
image_usage: vk::IMAGE_USAGE_COLOR_ATTACHMENT_BIT | vk::IMAGE_USAGE_TRANSFER_DST_BIT,
image_sharing_mode: vk::SharingMode::Exclusive,
pre_transform,
composite_alpha: vk::COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
present_mode,
clipped: 1,
old_swapchain: vk::SwapchainKHR::null(),
image_array_layers: 1,
p_queue_family_indices: ptr::null(),
queue_family_index_count: 0,
};
let swapchain = swapchain_loader
.create_swapchain_khr(&swapchain_create_info, None)
.unwrap();
let command_pool = device.create_command_pool(&pool_create_info, None).unwrap();
let command_buffer_allocate_info = vk::CommandBufferAllocateInfo {
s_type: vk::StructureType::CommandBufferAllocateInfo,
p_next: ptr::null(),
command_buffer_count: image_count,
command_pool: command_pool,
level: vk::CommandBufferLevel::Primary,
};
let command_buffers = device
.allocate_command_buffers(&command_buffer_allocate_info)
.unwrap();
let swapchain_images = swapchain_loader
.get_swapchain_images_khr(swapchain)
.unwrap();
let command_buffer_begin_info = vk::CommandBufferBeginInfo {
s_type: vk::StructureType::CommandBufferBeginInfo,
p_next: ptr::null(),
p_inheritance_info: ptr::null(),
flags: vk::COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
};
let subresource_range = vk::ImageSubresourceRange {
aspect_mask: vk::IMAGE_ASPECT_COLOR_BIT,
base_mip_level: 0,
level_count: 1,
base_array_layer: 0,
layer_count: 1,
};
for (index, swapchain_image) in swapchain_images.iter().enumerate() {
let barrier_from_present_to_clear = vk::ImageMemoryBarrier {
s_type: vk::StructureType::ImageMemoryBarrier,
p_next: ptr::null(),
src_access_mask: vk::ACCESS_MEMORY_READ_BIT,
dst_access_mask: vk::ACCESS_TRANSFER_WRITE_BIT,
old_layout: vk::ImageLayout::Undefined,
new_layout: vk::ImageLayout::TransferDstOptimal,
src_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
dst_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
image: *swapchain_image,
subresource_range: subresource_range.clone(),
};
let barrier_from_clear_to_present = vk::ImageMemoryBarrier {
s_type: vk::StructureType::ImageMemoryBarrier,
p_next: ptr::null(),
src_access_mask: vk::ACCESS_TRANSFER_WRITE_BIT,
dst_access_mask: vk::ACCESS_MEMORY_READ_BIT,
old_layout: vk::ImageLayout::TransferDstOptimal,
new_layout: vk::ImageLayout::PresentSrcKhr,
src_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
dst_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
image: *swapchain_image,
subresource_range: subresource_range.clone(),
};
let command_buffer = command_buffers[index];
device
.begin_command_buffer(command_buffer, &command_buffer_begin_info)
.unwrap();
device.cmd_pipeline_barrier(
command_buffer,
vk::PIPELINE_STAGE_TRANSFER_BIT,
vk::PIPELINE_STAGE_TRANSFER_BIT,
vk::DependencyFlags::empty(),
&[],
&[],
&[barrier_from_present_to_clear],
);
let clear_color = vk::ClearColorValue::new_float32([1.0, index as f32 / 4.0, 0.2, 0.0]);
device.cmd_clear_color_image(
command_buffer,
*swapchain_image,
vk::ImageLayout::TransferDstOptimal,
&clear_color,
&[subresource_range.clone()],
);
device.cmd_pipeline_barrier(
command_buffer,
vk::PIPELINE_STAGE_TRANSFER_BIT,
vk::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
vk::DependencyFlags::empty(),
&[],
&[],
&[barrier_from_clear_to_present],
);
device.end_command_buffer(command_buffer).unwrap();
}
events_loop.run_forever(|event| match event {
winit::Event::WindowEvent {
event: winit::WindowEvent::Closed,
..
} => {
device.device_wait_idle().unwrap();
device.destroy_semaphore(image_available_semaphore, None);
device.destroy_semaphore(render_complete_semaphore, None);
device.destroy_command_pool(command_pool, None);
swapchain_loader.destroy_swapchain_khr(swapchain, None);
device.destroy_device(None);
surface_loader.destroy_surface_khr(surface, None);
debug_report_loader.destroy_debug_report_callback_ext(debug_callback, None);
instance.destroy_instance(None);
winit::ControlFlow::Break
}
_ => {
let image_index = swapchain_loader
.acquire_next_image_khr(
swapchain,
std::u64::MAX,
image_available_semaphore,
vk::Fence::null(),
)
.unwrap();
let present_semaphores = [image_available_semaphore];
let render_semaphores = [render_complete_semaphore];
let command_buffer = [command_buffers[image_index as usize]];
let submit_info = [
vk::SubmitInfo {
s_type: vk::StructureType::SubmitInfo,
p_next: ptr::null(),
wait_semaphore_count: present_semaphores.len() as u32,
p_wait_semaphores: present_semaphores.as_ptr(),
p_wait_dst_stage_mask: &vk::PIPELINE_STAGE_TRANSFER_BIT,
command_buffer_count: command_buffer.len() as u32,
p_command_buffers: command_buffer.as_ptr(),
signal_semaphore_count: render_semaphores.len() as u32,
p_signal_semaphores: render_semaphores.as_ptr(),
},
];
device
.queue_submit(present_queue, &submit_info, vk::Fence::null())
.unwrap();
let present_info = vk::PresentInfoKHR {
s_type: vk::StructureType::PresentInfoKhr,
p_next: ptr::null(),
wait_semaphore_count: render_semaphores.len() as u32,
p_wait_semaphores: render_semaphores.as_ptr(),
swapchain_count: 1,
p_swapchains: &swapchain,
p_image_indices: &image_index,
p_results: ptr::null_mut(),
};
swapchain_loader
.queue_present_khr(present_queue, &present_info)
.unwrap();
winit::ControlFlow::Continue
}
});
}
}

某些值可能过早地被释放,或者我传递指针不正确,但我看不到在哪里(我对 Rust 相对较新)。

很抱歉代码长度,我不确定如何进一步简化此示例。有趣的部分在底部,我提交管道屏障和信号量。我使用的 Vulkan SDK 是 1.0.57.0,ash 是 0.18.4,winit 是 0.7,kernel32-sys 是 0.2.2。

我也将不胜感激任何关于调试它的建议。我尝试(并将继续尝试)进入验证层以检查各个 API 调用并并排比较,但在哪里引入差异并不明显。

VK_ERROR_VALIDATION_FAILED_EXT

通常在从调试回调返回VK_TRUE的情况下返回。该规范建议不要这样做:

回调返回一个VkBool32,指示调用层应用程序希望中止调用。值VK_TRUE表示应用程序要中止此调用。如果应用程序返回VK_FALSE,则不得中止该命令。应用程序始终返回VK_FALSE以便它们在启用和未启用验证层的情况下看到相同的行为。

VK_TRUE仅用于层开发。它当前的用途是层的单元测试,这要求命令在到达 GPU 驱动程序之前中止(以防止测试不感兴趣的崩溃)。在应用程序中使用它是一个常见的错误。正如引用所说,应用程序应该始终使用VK_FALSE.

在您的情况下,图层的行为有点奇怪,但可能发生的情况是:

  1. 您的应用程序和教程都会在vkCmdPipelineBarrier上生成良性警告。
  2. 因为您返回VK_TRUE屏障中止并且不计算在内。
  3. vkCmdPipelineBarrier返回void(即无法返回VK_ERROR_VALIDATION_FAILED_EXT),所以你永远不会知道它实际上被中止了。
  4. 由于布局过渡已中止,因此vkQueueSubmit上的图像布局错误,因此会出现相应的错误。