未声明的标识符

undeclared identifiers?

本文关键字:标识符 未声明      更新时间:2023-10-16

代码不断出错,这是从旧VS到2010版本的转换:

#include <string>
#include <stdlib.h>
#include <iostream>
#include <time.h>
#include <math.h>
using std::string;
#define CROSSOVER_RATE            0.7
#define MUTATION_RATE             0.001
#define POP_SIZE                  100           //must be an even number
#define CHROMO_LENGTH             300
#define GENE_LENGTH               4
#define MAX_ALLOWABLE_GENERATIONS   400
//returns a float between 0 & 1
#define RANDOM_NUM      ((float)rand()/(RAND_MAX+1))
//----------------------------------------------------------------------------------------
//
//  define a data structure which will define a chromosome
//
//----------------------------------------------------------------------------------------
struct chromo_typ
{
    //the binary bit string is held in a std::string
  string    bits;  
    float     fitness;
    chromo_typ(): bits(""), fitness(0.0f){};
    chromo_typ(string bts, float ftns): bits(bts), fitness(ftns){}
};

/////////////////////////////////prototypes/////////////////////////////////////////////////////
void    PrintGeneSymbol(int val);
string  GetRandomBits(int length);
int     BinToDec(string bits);
float   AssignFitness(string bits, int target_value);
void    PrintChromo(string bits);
void    PrintGeneSymbol(int val);
int     ParseBits(string bits, int* buffer);
string  Roulette(int total_fitness, chromo_typ* Population);
void    Mutate(string &bits);
void    Crossover(string &offspring1, string &offspring2);

//-------------------------------main--------------------------------------------------
//
//-------------------------------------------------------------------------------------
int main()
{
    //seed the random number generator
    srand((int)time(NULL));
  //just loop endlessly until user gets bored :0)
  while (true)
  {
    //storage for our population of chromosomes.
    chromo_typ Population[POP_SIZE];
      //get a target number from the user. (no error checking)
      float Target;
      cout << "nInput a target number: ";
      cin >> Target;
    cout << endl << endl;
      //first create a random population, all with zero fitness.
      for (int i=0; i<POP_SIZE; i++)
      {
          Population[i].bits      = GetRandomBits(CHROMO_LENGTH);
          Population[i].fitness = 0.0f;
      }
      int GenerationsRequiredToFindASolution = 0;
      //we will set this flag if a solution has been found
      bool bFound = false;
      //enter the main GA loop
      while(!bFound)
      {
          //this is used during roulette wheel sampling
          float TotalFitness = 0.0f;
          // test and update the fitness of every chromosome in the 
      // population
          for (int i=0; i<POP_SIZE; i++)
          {
              Population[i].fitness = AssignFitness(Population[i].bits, Target);
              TotalFitness += Population[i].fitness;
          }
          // check to see if we have found any solutions (fitness will be 999)
          for (i=0; i<POP_SIZE; i++)
          {
              if (Population[i].fitness == 999.0f)
              {
          cout << "nSolution found in " << GenerationsRequiredToFindASolution << " generations!" << endl << endl;;
                  PrintChromo(Population[i].bits);
                  bFound = true;
          break;
              }
          }
          // create a new population by selecting two parents at a time and creating offspring
      // by applying crossover and mutation. Do this until the desired number of offspring
      // have been created. 
          //define some temporary storage for the new population we are about to create
          chromo_typ temp[POP_SIZE];
          int cPop = 0;
          //loop until we have created POP_SIZE new chromosomes
          while (cPop < POP_SIZE)
          {
              // we are going to create the new population by grabbing members of the old population
              // two at a time via roulette wheel selection.
              string offspring1 = Roulette(TotalFitness, Population);
              string offspring2 = Roulette(TotalFitness, Population);
        //add crossover dependent on the crossover rate
        Crossover(offspring1, offspring2);
              //now mutate dependent on the mutation rate
              Mutate(offspring1);
              Mutate(offspring2);
              //add these offspring to the new population. (assigning zero as their
        //fitness scores)
              temp[cPop++] = chromo_typ(offspring1, 0.0f);
              temp[cPop++] = chromo_typ(offspring2, 0.0f);
          }//end loop
          //copy temp population into main population array
          for (i=0; i<POP_SIZE; i++)
      {
              Population[i] = temp[i];
      }
          ++GenerationsRequiredToFindASolution;
          // exit app if no solution found within the maximum allowable number
          // of generations
          if (GenerationsRequiredToFindASolution > MAX_ALLOWABLE_GENERATIONS)
          {
              cout << "No solutions found this run!";
              bFound = true;
          }
      }
    cout << "nnn";
  }//end while
    return 0;
}


//---------------------------------GetRandomBits-----------------------------------------
//
//  This function returns a string of random 1s and 0s of the desired length.
//
//-----------------------------------------------------------------------------------------
string  GetRandomBits(int length)
{
    string bits;
    for (int i=0; i<length; i++)
    {
        if (RANDOM_NUM > 0.5f)
            bits += "1";
        else
            bits += "0";
    }
    return bits;
}
//---------------------------------BinToDec-----------------------------------------
//
//  converts a binary string into a decimal integer
//
//-----------------------------------------------------------------------------------
int BinToDec(string bits)
{
    int val          = 0;
    int value_to_add = 1;
    for (int i = bits.length(); i > 0; i--)
    {

        if (bits.at(i-1) == '1')
            val += value_to_add;
        value_to_add *= 2;
    }//next bit
    return val;
}

//---------------------------------ParseBits------------------------------------------
//
// Given a chromosome this function will step through the genes one at a time and insert 
// the decimal values of each gene (which follow the operator -> number -> operator rule)
// into a buffer. Returns the number of elements in the buffer.
//------------------------------------------------------------------------------------
int ParseBits(string bits, int* buffer)
{
    //counter for buffer position
    int cBuff = 0;
    // step through bits a gene at a time until end and store decimal values
    // of valid operators and numbers. Don't forget we are looking for operator - 
    // number - operator - number and so on... We ignore the unused genes 1111
    // and 1110
    //flag to determine if we are looking for an operator or a number
    bool bOperator = true;
    //storage for decimal value of currently tested gene
    int this_gene = 0;
    for (int i=0; i<CHROMO_LENGTH; i+=GENE_LENGTH)
    {
        //convert the current gene to decimal
        this_gene = BinToDec(bits.substr(i, GENE_LENGTH));
        //find a gene which represents an operator
        if (bOperator)
        {
            if ( (this_gene < 10) || (this_gene > 13) ) 
                continue;
            else
            {
                bOperator       = false;
                buffer[cBuff++] = this_gene;
                continue;
            }
        }
        //find a gene which represents a number
        else
        {
            if (this_gene > 9)
                continue;
            else
            {
                bOperator       = true;
                buffer[cBuff++] = this_gene;
                continue;
            }
        }
    }//next gene
    //  now we have to run through buffer to see if a possible divide by zero
    //  is included and delete it. (ie a '/' followed by a '0'). We take an easy
    //  way out here and just change the '/' to a '+'. This will not effect the 
    //  evolution of the solution
    for (i=0; i<cBuff; i++)
    {
        if ( (buffer[i] == 13) && (buffer[i+1] == 0) )
            buffer[i] = 10;
    }
    return cBuff;
}
//---------------------------------AssignFitness--------------------------------------
//
//  given a string of bits and a target value this function will calculate its  
//  representation and return a fitness score accordingly
//------------------------------------------------------------------------------------
float AssignFitness(string bits, int target_value)
{
    //holds decimal values of gene sequence
    int buffer[(int)(CHROMO_LENGTH / GENE_LENGTH)];
    int num_elements = ParseBits(bits, buffer);
    // ok, we have a buffer filled with valid values of: operator - number - operator - number..
    // now we calculate what this represents.
    float result = 0.0f;
    for (int i=0; i < num_elements-1; i+=2)
    {
        switch (buffer[i])
        {
            case 10:
                result += buffer[i+1];
                break;
            case 11:
                result -= buffer[i+1];
                break;
            case 12:
                result *= buffer[i+1];
                break;
            case 13:
                result /= buffer[i+1];
                break;
        }//end switch
    }
    // Now we calculate the fitness. First check to see if a solution has been found
    // and assign an arbitarily high fitness score if this is so.
    if (result == (float)target_value)
        return 999.0f;
    else
        return 1/(float)fabs((double)(target_value - result));
    //  return result;
}
//---------------------------------PrintChromo---------------------------------------
//
// decodes and prints a chromo to screen
//-----------------------------------------------------------------------------------
void PrintChromo(string bits)
{   
    //holds decimal values of gene sequence
    int buffer[(int)(CHROMO_LENGTH / GENE_LENGTH)];
    //parse the bit string
    int num_elements = ParseBits(bits, buffer);
    for (int i=0; i<num_elements; i++)
  {
        PrintGeneSymbol(buffer[i]);
  }
    return;
}
//--------------------------------------PrintGeneSymbol-----------------------------
//  
//  given an integer this function outputs its symbol to the screen 
//----------------------------------------------------------------------------------
void PrintGeneSymbol(int val)
{
    if (val < 10 )
        cout << val << " ";
    else
    {
        switch (val)
        {
        case 10:
            cout << "+";
            break;
        case 11:
            cout << "-";
            break;
        case 12:
            cout << "*";
            break;
        case 13:
            cout << "/";
            break;
        }//end switch
        cout << " ";
    }
    return;
}
//------------------------------------Mutate---------------------------------------
//
//  Mutates a chromosome's bits dependent on the MUTATION_RATE
//-------------------------------------------------------------------------------------
void Mutate(string &bits)
{
    for (int i=0; i<bits.length(); i++)
    {
        if (RANDOM_NUM < MUTATION_RATE)
        {
            if (bits.at(i) == '1')
                bits.at(i) = '0';
            else
                bits.at(i) = '1';
        }
    }
    return;
}
//---------------------------------- Crossover ---------------------------------------
//
//  Dependent on the CROSSOVER_RATE this function selects a random point along the 
//  lenghth of the chromosomes and swaps all the  bits after that point.
//------------------------------------------------------------------------------------
void Crossover(string &offspring1, string &offspring2)
{
  //dependent on the crossover rate
  if (RANDOM_NUM < CROSSOVER_RATE)
  {
    //create a random crossover point
    int crossover = (int) (RANDOM_NUM * CHROMO_LENGTH);
    string t1 = offspring1.substr(0, crossover) + offspring2.substr(crossover, CHROMO_LENGTH);
    string t2 = offspring2.substr(0, crossover) + offspring1.substr(crossover, CHROMO_LENGTH);
    offspring1 = t1; offspring2 = t2;                 
  }
}

//--------------------------------Roulette-------------------------------------------
//
//  selects a chromosome from the population via roulette wheel selection
//------------------------------------------------------------------------------------
string Roulette(int total_fitness, chromo_typ* Population)
{
    //generate a random number between 0 & total fitness count
    float Slice = (float)(RANDOM_NUM * total_fitness);
    //go through the chromosones adding up the fitness so far
    float FitnessSoFar = 0.0f;
    for (int i=0; i<POP_SIZE; i++)
    {
        FitnessSoFar += Population[i].fitness;
        //if the fitness so far > random number return the chromo at this point
        if (FitnessSoFar >= Slice)
            return Population[i].bits;
    }
    return "";
}   

我得到的错误是:

error C2065: 'cin' : undeclared identifier
error C2065: 'cout' : undeclared identifier
error C2065: 'endl' : undeclared identifier
error C2065: 'i' : undeclared identifier
error C2228: left of '.bits' must have class/struct/union
error C2228: left of '.fitness' must have class/struct/union

您希望std::cin(等)或using std::cin;位于源文件的顶部。

关于i的问题;好吧,您得到了一个使用i而不声明它的循环(这反过来也导致了.bits.fitness的问题。

在每个cin, cout(std::cin,std::cout)前面加上std或在开头声明using namespace std;

// check to see if we have found any solutions (fitness will be 999)
for (i=0; i<POP_SIZE; i++)
//copy temp population into main population array
for (i=0; i<POP_SIZE; i++) // In both cases, You forgot to declare i. So, change to
                           // for (int i=0; ...)
error C2065: 'cin' : undeclared identifier
error C2065: 'cout' : undeclared identifier
error C2065: 'endl' : undeclared identifier

在每次使用cincoutendl之前加上std::,或者在包含之后将这些行添加到程序中:

using std::cout;
using std::cin;
using std::endl;

至于下一个错误:

error C2065: 'i' : undeclared identifier

更改此行:

for (i=0; i<POP_SIZE; i++)

到此:

for (int i = 0; i < POP_SIZE; i++)

循环变量声明在循环结束时超出了作用域。

p.s.更喜欢cout << 'n'而不是cout << endl。后者刷新输出流(通常是不必要的),如果要向文件中写入许多行,则会产生严重的速度减慢。