插入矢量变换

Inserting a vector transformation

本文关键字:变换 插入      更新时间:2023-10-16

我之前发布了一个关于连接两个std::vector的最佳方式的问题,其中必须首先转换一个向量。虽然使用std::transform的明显解决方案可能不是理论上的最优解决方案,但多次容量检查的成本不太可能是显著的。

但是,如果我们考虑插入一个必须转换为另一个的向量的更普遍的问题,那么现在就涉及到潜在的显著开销。

做到这一点的最佳方法是什么?

@VaughnCato对另一个问题使用boost::transform_iterator的方法也适用于这个问题:

auto vec1begin = boost::make_transform_iterator(vec1.begin(), f);
auto vec1end = boost::make_transform_iterator(vec1.end(), f);
vec2.insert(middle, vec1begin, vec1end);

我在这里看到了一些选项:

方法1:温度变换

std::vector<T1> temp {};
temp.reserve(vec.size());
std::transform(vec2.begin(), vec2.end(), std::back_inserter(temp), op);
vec1.insert(vec1.begin() + pos, std::make_move_iterator(temp.begin()),
               std::make_move_iterator(temp.end()));

但现在开销不是微不足道的容量检查,相反,额外的成本是为temp分配/释放size_of(T1) * vec2.size()。如果CCD_ 6很大,这很容易成为一个显著的成本。

方法2:循环插入

vec1.reserve(vec1.size() + vec2.size());
std::size_t i {pos};
for (const auto& p : vec2) {
    vec1.insert(vec1.begin() + i, op);
    ++i;
}

这避免了方法1的额外分配/解除分配,但该解决方案还有另一个严重问题:vec1中的每个n = vec1.size() - pos元素都必须移位n次,即O(n^2)操作。

方法3:转移和复制

vec1.resize(vec1.size() + pair_vec.size());
std::move(vec1.begin() + pos, vec1.end(), vec1.begin() + pos + vec2.size());
std::transform(vec2.begin(), vec2.end(), vec1.begin() + pos, op);

这似乎接近于我们想要的,我们只为"额外"的n默认构造函数付费。

编辑

我的移位和复制方法(3)不正确,应该是:

auto v1_size = vec1.size();
vec1.resize(vec1.size() + vec2.size());
std::move(vec1.begin() + pos, vec1.begin() + v1_size, vec1.begin() + pos + vec2.size());
std::transform(vec2.begin(), vec2.end(), vec1.begin() + pos, op);

测试(使用@VaughnCato和@ViktorSehr的方法更新)

我测试了方法1&3(方法2显然不会很好地执行——很容易验证),以及@VaughnCato和@ViktorSehr建议的方法。这是完整的代码:

#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>
#include <cstdint>
#include <chrono>
#include <numeric>
#include <random>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/range/adaptor/transformed.hpp>
using std::size_t;
std::vector<int> generate_random_ints(size_t n)
{
    std::default_random_engine generator;
    auto seed1 = std::chrono::system_clock::now().time_since_epoch().count();
    generator.seed((unsigned) seed1);
    std::uniform_int_distribution<int> uniform {};
    std::vector<int> v(n);
    std::generate_n(v.begin(), n, [&] () { return uniform(generator); });
    return v;
}
std::vector<std::string> generate_random_strings(size_t n)
{
    std::default_random_engine generator;
    auto seed1 = std::chrono::system_clock::now().time_since_epoch().count();
    generator.seed((unsigned) seed1);
    std::uniform_int_distribution<int> uniform {};
    std::vector<std::string> v(n);
    std::generate_n(v.begin(), n, [&] () { return std::to_string(uniform(generator)); });
    return v;
}
template <typename D=std::chrono::nanoseconds, typename F>
D benchmark(F f, unsigned num_tests)
{
    D total {0};
    for (unsigned i = 0; i < num_tests; ++i) {
        auto start = std::chrono::system_clock::now();
        f();
        auto end = std::chrono::system_clock::now();
        total += std::chrono::duration_cast<D>(end - start);
    }
    return D {total / num_tests};
}
template <typename T1, typename T2, typename UnaryOperation>
void temp_transform(std::vector<T1> vec1, const std::vector<T2> &vec2, size_t pos, UnaryOperation op)
{
    std::vector<T1> temp {};
    temp.reserve(vec2.size());
    std::transform(vec2.begin(), vec2.end(), std::back_inserter(temp), op);
    vec1.insert(vec1.begin() + pos, std::make_move_iterator(temp.begin()),
                std::make_move_iterator(temp.end()));
}
template <typename T1, typename T2, typename UnaryOperation>
void shift_copy(std::vector<T1> vec1, const std::vector<T2> &vec2, size_t pos, UnaryOperation op)
{
    auto v1_size = vec1.size();
    vec1.resize(vec1.size() + vec2.size());
    std::move(vec1.begin() + pos, vec1.begin() + v1_size, vec1.begin() + pos + vec2.size());
    std::transform(vec2.begin(), vec2.end(), vec1.begin() + pos, op);
}
template <typename T1, typename T2, typename UnaryOperation>
void boost_transform(std::vector<T1> vec1, const std::vector<T2> &vec2, size_t pos, UnaryOperation op)
{
    auto v2_begin = boost::make_transform_iterator(vec2.begin(), op);
    auto v2_end   = boost::make_transform_iterator(vec2.end(), op);
    vec1.insert(vec1.begin() + pos, v2_begin, v2_end);
}
template <typename T1, typename T2, typename UnaryOperation>
void boost_adapter(std::vector<T1> vec1, const std::vector<T2> &vec2, size_t pos, UnaryOperation op)
{
   auto transformed_range = vec2 | boost::adaptors::transformed(op);
   vec1.insert(vec1.begin() + pos, transformed_range.begin(), transformed_range.end());
}
int main(int argc, char **argv)
{
    unsigned num_tests {1000};
    size_t vec1_size {1000000};
    size_t vec2_size {1000000};
    size_t insert_pos {vec1_size / 2};
    // Switch the variable names to inverse test
    auto vec2 = generate_random_ints(vec1_size);
    auto vec1 = generate_random_strings(vec2_size);
    //auto op = [] (const std::string& str) { return std::stoi(str); };
    auto op = [] (int i) { return std::to_string(i); };
    auto f_temp_transform_insert = [&vec1, &vec2, &insert_pos, &op] () {
        temp_transform(vec1, vec2, insert_pos, op);
    };
    auto f_shift_copy_insert = [&vec1, &vec2, &insert_pos, &op] () {
        shift_copy(vec1, vec2, insert_pos, op);
    };
    auto f_boost_transform_insert = [&vec1, &vec2, &insert_pos, &op] () {
        boost_transform(vec1, vec2, insert_pos, op);
    };
   auto f_boost_adapter_insert = [&vec1, &vec2, &insert_pos, &op] () {
       boost_adapter(vec1, vec2, insert_pos, op);
   };
    auto temp_transform_insert_time  = benchmark<std::chrono::milliseconds>(f_temp_transform_insert, num_tests).count();
    auto shift_copy_insert_time      = benchmark<std::chrono::milliseconds>(f_shift_copy_insert, num_tests).count();
    auto boost_transform_insert_time = benchmark<std::chrono::milliseconds>(f_boost_transform_insert, num_tests).count();
    auto boost_adapter_insert_time   = benchmark<std::chrono::milliseconds>(f_boost_adapter_insert, num_tests).count();
    std::cout << "temp_transform: " << temp_transform_insert_time << "ms" << std::endl;
    std::cout << "shift_copy: " << shift_copy_insert_time << "ms" << std::endl;
    std::cout << "boost_transform: " << boost_transform_insert_time << "ms" << std::endl;
    std::cout << "boost_adapter: " << boost_adapter_insert_time << "ms" << std::endl;
    return 0;
}

结果

编制单位:

g++ vector_insert.cpp -std=c++11 -O3 -o vector_insert_test

平均用户运行时间为:

|    Method   | std::string -> int (ms) | int -> std::string (ms) |
|:-----------:|:-----------------------:|:-----------------------:|
| 1           |            68           |           220           |
| 3           |            67           |           222           |
| @VaughnCato |            71           |           239           |
| @ViktorSehr |            72           |           236           |

TLDR

  • boost方法不如std::transform方法快
  • std::transform方法几乎同样好——尽管int->std::stringstd::string->int的性能之间存在难以解释的差异

使用boost::range::adapters::transformed如何?

std::vector<...> first_vector;
auto transform_functor = [](...){...};
auto transformed_range = first_vector | boost::adaptors::transformed(transform_functor):
some_vector.insert(some_vector.end(), transformed_range.begin(), transformed_range.end());

考虑到boost::transformvector::insert函数的实现尽可能巧妙,这应该能够忽略任何不必要的容量检查。