与cusparse相比,cublas异常缓慢

cublas is unusually slow compare to cusparse

本文关键字:异常 缓慢 cublas cusparse 相比      更新时间:2023-10-16

我正在尝试运行一些测试,以比较cusparse和cublas在不同稀疏性下的性能(使用Titan X),这是名为"testcusparsevector.cpp"的主要代码:

#include <stdio.h>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <fstream>
#include <time.h>
#include <cuda_runtime.h>
#include <cublas.h>
#include <cusparse_v2.h>
#include <cublas_v2.h>
#include <assert.h>
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))

// /home/gpu1/Install/OpenBLAS-0.2.14

#define CHECK_EQ(a,b) do { 
    if ((a) != (b)) { 
        cout <<__FILE__<<" : "<< __LINE__<<" : check failed because "<<a<<"!="<<b<<endl;
        exit(1);
    }
} while(0)
#define CUBLAS_CHECK(condition) 
do {
    cublasStatus_t status = condition; 
    CHECK_EQ(status, CUBLAS_STATUS_SUCCESS); 
} while(0)
#define CUSPARSE_CHECK(condition)
do {
    cusparseStatus_t status = condition; 
    switch(status)
    {
        case CUSPARSE_STATUS_NOT_INITIALIZED:
            cout << "CUSPARSE_STATUS_NOT_INITIALIZED" << endl;
            break;
        case CUSPARSE_STATUS_ALLOC_FAILED:
            cout << "CUSPARSE_STATUS_ALLOC_FAILED" << endl;
            break;
        case CUSPARSE_STATUS_INVALID_VALUE:
            cout << "CUSPARSE_STATUS_INVALID_VALUE" << endl;
            break;
        case CUSPARSE_STATUS_ARCH_MISMATCH:
            cout << "CUSPARSE_STATUS_ARCH_MISMATCH" << endl;
            break;
        case CUSPARSE_STATUS_MAPPING_ERROR:
            cout << "CUSPARSE_STATUS_MAPPING_ERROR" << endl;
            break;
            case CUSPARSE_STATUS_EXECUTION_FAILED:
            cout << "CUSPARSE_STATUS_EXECUTION_FAILED" << endl;
            break;
        case CUSPARSE_STATUS_INTERNAL_ERROR:
            cout << "CUSPARSE_STATUS_INTERNAL_ERROR" << endl;
            break;
        case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
            cout << "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED" << endl;
            break;
        case CUSPARSE_STATUS_ZERO_PIVOT:
            cout << "CUSPARSE_STATUS_ZERO_PIVOT" << endl;
    }
    CHECK_EQ(status, CUSPARSE_STATUS_SUCCESS); 
} while(0)
#define CUDA_CHECK(condition)
do {
    cudaError_t error = condition;
    CHECK_EQ(error, cudaSuccess);
} while(0)
//check after kernel function
#define CUDA_POST_KERNEL_CHECK CUDA_CHECK(cudaPeekAtLastError())

#define __TIMING__ 1
#if __TIMING__

#define INIT_TIMER  cudaEvent_t start, stop; 
    float milliseconds = 0; 
    float sum = 0;
    cudaEventCreate( &start );
    cudaEventCreate( &stop );
#define TIC {  cudaEventRecord( start ); }
#if __CUDNN__
    #define PREDEFNAME "CUDNN"
#else
    #define PREDEFNAME "CUDA"
#endif
#define TOC(a) { cudaEventRecord( stop ); 
        cudaEventSynchronize( stop ); 
        cudaEventElapsedTime( &milliseconds, start, stop );  
        printf( "GPU Execution time of %s_%s: %f msn",PREDEFNAME, a, milliseconds ); 
        sum += milliseconds;
        fflush(stdout); }
#define CLOSE_TIMER {cudaEventDestroy(start); cudaEventDestroy(stop); }
#endif
using namespace std;
void dispArray(double* array, size_t width, size_t height) {
    for (int i=0; i < height;i++ ) {
        for (int j=0;j < width;j++) {
            cout << array[j*height+i] << ' ';
        }
        cout << endl;
    }
    cout << endl;
}
int main()
{
    srand(time(NULL));
    const int num_loop = 1;
    const int inside_loop = 1000;
    // const int WIDTH = 512*3*3;
    // const int HEIGHT = 512;
    // const int WIDTHOUT = 36;
    const int WIDTH = 4608;
    const int HEIGHT = 512;
    const int WIDTHOUT = 144;
    // const int WIDTH = 18500;
    // const int HEIGHT = 512;
    // const int WIDTHOUT = 1;
    // const int WIDTH = 3;
    // const int HEIGHT = 5;
    // const int WIDTHOUT = 2;
    INIT_TIMER
    ofstream myfile;
    myfile.open("test_sparsity.log");
    cudaError_t cudaStat;    
    cusparseStatus_t stat;
    cusparseHandle_t handle;
    cublasHandle_t handleblas;
    double *devPtrOutput;
    double *devPtrOutput2;
    double *devPtrRand;
    double *devPtrSec;
    CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput), sizeof(double)*HEIGHT*WIDTHOUT));
    CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput2), sizeof(double)*HEIGHT*WIDTHOUT));
    CUDA_CHECK(cudaMalloc((void **)&(devPtrRand), sizeof(double)*WIDTH*WIDTHOUT));
    CUDA_CHECK(cudaMalloc((void **)&(devPtrSec), sizeof(double)*WIDTH*HEIGHT));
    const double alpha=1.0;
    const double beta=0.0;
    double *csrVal;
    int *csrRowPtr;
    int *csrColInd;
    const bool SPARSE = true;
    long a = clock();
    long temp = clock();
    cusparseMatDescr_t descr;
    CUSPARSE_CHECK(cusparseCreateMatDescr(&descr));
    cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);
    int nnz;
    CUSPARSE_CHECK(cusparseCreate(&handle));
    CUBLAS_CHECK(cublasCreate(&handleblas));
    int *nnzPerRow_gpu;
    CUDA_CHECK(cudaMalloc((void **)&(nnzPerRow_gpu), sizeof(int)*HEIGHT));
    CUDA_CHECK(cudaMalloc((void **)&(csrRowPtr), sizeof(int)*(HEIGHT+1)));
    double density_array[1] = {0.9999};//, 0.8, 0.7, 0.6, 0.5,      0.4, 0.3, 0.2, 0.1 ,0.09,     0.08, 0.07, 0.06, 0.05 ,0.04,     0.03, 0.02, 0.01};
    for (int inddense=0;inddense < 1;inddense++) {
        double DENSITY = density_array[inddense];
        int num_non_zeros = DENSITY * (WIDTH * HEIGHT);
        CUDA_CHECK(cudaMalloc((void **)&(csrColInd), sizeof(int)*num_non_zeros));
        CUDA_CHECK(cudaMalloc((void **)&(csrVal), sizeof(double)*num_non_zeros));
        INIT_TIMER
        for (int iter=0; iter < num_loop;iter++) {
            vector<double> randVec(WIDTH*WIDTHOUT, 0);
            vector<double> secArray(WIDTH*HEIGHT, 0);
            vector<int> temp(WIDTH*HEIGHT, 1);
            for (int j = 0; j < WIDTH*WIDTHOUT; j++) {
                randVec[j]=(double)(rand()%100000)/100;
            }
            for (int x, i = 0; i < num_non_zeros;i++) {
                do
                {
                    x = rand() % (WIDTH*HEIGHT);
                } while(temp[x] == 0);
                temp[x]=0;
                secArray[x]=(double)(rand()%100000)/100;
            }
            int count = 0;
            for(int i=0;i < WIDTH*HEIGHT;i++) {
                if (secArray[i] != 0) {
                    count++;
                }
            }
            // randVec = {2,2,2,3,3,3};
            // secArray = {0,5,0,2,5,8,7,0,0,0,0,2,0,4,4};
            CUDA_CHECK(cudaMemcpy(devPtrRand, &randVec[0], sizeof(double)*WIDTH*WIDTHOUT, cudaMemcpyHostToDevice));
            CUDA_CHECK(cudaMemcpy(devPtrSec, &secArray[0], sizeof(double)*WIDTH*HEIGHT, cudaMemcpyHostToDevice));

            if (SPARSE) {
                CUSPARSE_CHECK(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, HEIGHT, WIDTH, descr, devPtrSec, HEIGHT, nnzPerRow_gpu, &nnz));
                CUSPARSE_CHECK(cusparseDdense2csr(handle, HEIGHT, WIDTH, descr,devPtrSec,HEIGHT,nnzPerRow_gpu,csrVal,csrRowPtr,csrColInd));
            }       
            // vector<double> tempcsrVal(nnz,0);
            // vector<int> tempcsrRowPtr(HEIGHT+1);
            // vector<int> tempcsrColInd(nnz,0);
            // CUDA_CHECK(cudaMemcpy(&tempcsrVal[0], csrVal, sizeof(double)*nnz, cudaMemcpyDeviceToHost));
            // CUDA_CHECK(cudaMemcpy(&tempcsrRowPtr[0], csrRowPtr, sizeof(int)*(HEIGHT+1), cudaMemcpyDeviceToHost));
            // CUDA_CHECK(cudaMemcpy(&tempcsrColInd[0], csrColInd, sizeof(int)*nnz, cudaMemcpyDeviceToHost));
            // for (int i =0; i < nnz;i++) {
                // cout << tempcsrVal[i] << " ";
            // }
            // cout << endl;
            // for (int i =0; i < HEIGHT+1;i++) {
                // cout << tempcsrRowPtr[i] << " ";
            // }
            // cout << endl;
            // for (int i =0; i < nnz;i++) {
                // cout << tempcsrColInd[i] << " ";
            // }
            // cout << endl;
            cudaDeviceSynchronize();
            TIC
            for (int i=0 ; i < inside_loop;i++) {
                if (WIDTHOUT == 1) {
                    // TIC
                    CUSPARSE_CHECK(cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                    HEIGHT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr, csrColInd, 
                    devPtrRand, &beta, devPtrOutput));
                    // TOC("csrmv")
                } else {
                    // TIC
                    CUSPARSE_CHECK(cusparseDcsrmm(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, 
                        HEIGHT, WIDTHOUT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr, 
                        csrColInd, devPtrRand, WIDTH, &beta, devPtrOutput, HEIGHT));
                    // TOC("csrmm")
                }
            }
            TOC("csr")
            TIC
            for (int i=0 ; i < inside_loop;i++) {
                if (WIDTHOUT == 1) {
                    // TIC
                    CUBLAS_CHECK(cublasDgemv(handleblas, CUBLAS_OP_N, HEIGHT, WIDTH, &alpha, devPtrSec, HEIGHT , devPtrRand, 1, &beta, devPtrOutput2, 1));
                    // TOC("dgemv")
                } else {
                    // TIC
                    CUBLAS_CHECK(cublasDgemm(handleblas, CUBLAS_OP_N, CUBLAS_OP_N, HEIGHT, WIDTHOUT, WIDTH, &alpha, devPtrSec, HEIGHT, devPtrRand, WIDTH, &beta, devPtrOutput2, HEIGHT));
                    // TOC("dgemm")
                }
            }
            TOC("blas")

            #if 0
            vector<double> output(HEIGHT*WIDTHOUT, 0);
            vector<double> output2(HEIGHT*WIDTHOUT, 0);
            CUDA_CHECK(cudaMemcpy(&output[0], devPtrOutput, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
            CUDA_CHECK(cudaMemcpy(&output2[0], devPtrOutput2, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
            dispArray(&output[0], WIDTHOUT, HEIGHT);
            cout << endl;
            for (int i=0;i < WIDTHOUT * HEIGHT;i++) {
                if (output[i] != output2[i]) {
                    cout << "error: " << i << " " << (output[i] - output2[i]) << " " << output[i] << endl;
                }
            }
            #endif
        }
        cout << DENSITY << " " << sum/num_loop << endl;
        myfile << DENSITY << " " << sum/num_loop << endl;
        cudaFree(csrColInd);
        cudaFree(csrVal);
    }
    myfile.close();
    cudaFree(csrRowPtr);
    cudaFree(devPtrOutput);
    cudaFree(devPtrRand);
    cudaFree(devPtrSec);
}

然而,在使用编译代码之后

g++ -std=c++1y -O3 -I/usr/local/cuda/include -o testcusparsevector testcusparsevector.cpp -L/usr/local/cuda/lib64 -lcudart -lcublas -lcusparse

这是输出:

GPU Execution time of CUDA_csr: 4818.447266 ms
GPU Execution time of CUDA_blas: 5024.459961 ms

这应该意味着,即使我的密度是0.999,cusparseDcsrm仍然比cublasDgemm快,我已经检查了结果,这是好的,与其他例子相比,问题似乎来自于太慢的cublas。

你知道它是从哪里来的吗?

编辑:我试图将值更改为float,结果更符合我的要求,显然,cublas不是为双重计算而设计的。。。

提前谢谢。

Titan X(以及maxwell GPU系列的所有当前成员)的双精度浮点运算和单精度浮点运算之间的吞吐量比为1:32。

通常,稀疏矩阵运算是内存带宽限制的,而密集矩阵矩阵乘法是计算限制问题的一个例子。

因此,在您的示例中,您将处理一个通常受计算限制的问题,并将其作为稀疏矩阵乘法在处理器上运行,该处理器具有相对较大的内存带宽和相对较小的双精度计算吞吐量。

这种情况可能会导致两个API之间的界线模糊,而CUBLAS API通常会更快地进行这种比较。

如果您将代码切换为使用float而不是double(我认为您已经尝试过了),您将看到CUBLAS再次获胜。同样,如果你在一个单精度和双精度吞吐量比率不同的GPU上按原样运行代码,你会看到CUBLAS在那里再次获胜。

显然,cublas不是为双重计算而设计的。。。

与其这么说,我想说GTX泰坦X不是(主要)为双重计算而制造的。试试特斯拉K80、K40或其他具有更接近双吞吐量比的GPU。

以下是在"未增压"特斯拉K40:上运行的程序的输出

$ ./testcusparsevector
GPU Execution time of CUDA_csr: 8870.386719 ms
GPU Execution time of CUDA_blas: 1045.211792 ms

免责声明:我没有试图研究你的代码。我仔细看了一遍,没有发现明显的问题。但可能有我没有发现的问题。