展开具有不同长度的参数包

Expand parameter packs with different lengths

本文关键字:参数      更新时间:2023-10-16

我想"生成"一个函数指针的跳转表。所指向的函数是用两种类型模板化的。在两个类型列表中,每个可能的对都应该有一个不同的函数。理想情况下,我们可以有这样的东西:

#include <tuple>
template <typename X, typename Y>
void foo()
{}
template <typename... Xs, typename... Ys>
void bar(const std::tuple<Xs...>&, const std::tuple<Ys...>&)
{
  using fun_ptr_type = void (*) (void);
  static constexpr fun_ptr_type jump_table[sizeof...(Xs) * sizeof...(Ys)]
    = {&foo<Xs, Ys>...};
}
int main ()
{
  using tuple0 = std::tuple<int, char, double>;
  using tuple1 = std::tuple<float, unsigned long>;
  bar(tuple0{}, tuple1{});
}

正如预期的那样,当元组具有不同的长度时,它会失败:

foo.cc:15:20: error: pack expansion contains parameter packs 'Xs' and 'Ys' that have different lengths (3 vs. 2)
    = {&foo<Xs, Ys>...};
            ~~  ~~ ^
foo.cc:23:3: note: in instantiation of function template specialization 'bar<int, char, double, float, unsigned long>' requested here
  bar(tuple0{}, tuple1{});
  ^
1 error generated.

为了实现这种功能,我已经尝试并成功地使用了间接方法(第一个跳转表,其中包含指向具有另一个跳转表的函数的指针),但我发现它很笨拙。

所以,我的问题是:有解决办法吗?

您的示例代码是错误的,即使是在编译的情况下(即sizeof…(Xs)==sizeof。。。(Y))。比方说,您有N元元组,那么jump_table有N*N个元素,但只有前N个元素是用ptrs函数初始化的。

首先,您需要内部加入两个类型列表:

template<class A, class B>
struct P;
template<class... Ts>
struct L {};
template<class T, class... Ts>
using mul = L<P<T, Ts>...>;
template<class...>
struct cat;
template<class T>
struct cat<T>
{
    using type = T;
};
template<class... As, class... Bs>
struct cat<L<As...>, L<Bs...>>
{
    using type = L<As..., Bs...>;
};
template<class A, class B, class... Ts>
struct cat<A, B, Ts...>
{
    using type = typename cat<typename cat<A, B>::type, Ts...>::type;
};
template<class A, class B>
struct join;
template<class... As, class... Bs>
struct join<L<As...>, L<Bs...>>
{
    using type = typename cat<mul<As, Bs...>...>::type;
};

例如

join<L<int[1], int[2]>, L<float[1], float[2], float[3]>>::type

给你

L<P<int[1], float[1]>, P<int[1], float[2]>, P<int[1], float[3]>, P<int[2], float[1]>, P<int[2], float[2]>, P<int[2], float[3]>

回到你的例子:

template <typename X, typename Y>
void foo()
{}
template<class T, std::size_t N>
struct jump_table
{
    template<class... As, class... Bs>
    constexpr jump_table(L<P<As, Bs>...>)
      : table{&foo<As, Bs>...}
    {}
    T table[N];
};
template <typename... Xs, typename... Ys>
void bar(const std::tuple<Xs...>&, const std::tuple<Ys...>&)
{
  using fun_ptr_type = void (*) (void);
  static constexpr jump_table<fun_ptr_type, sizeof...(Xs) * sizeof...(Ys)> table
    = {typename join<L<Xs...>, L<Ys...>>::type()};
}
int main ()
{
  using tuple0 = std::tuple<int, char, double>;
  using tuple1 = std::tuple<float, unsigned long>;
  bar(tuple0{}, tuple1{});
}

这应该会达到你的预期。

对于手头的问题来说,这里的其他答案似乎太复杂了。以下是我的做法:

#include <array>
#include <tuple>
template <typename X, typename Y> void foo() {}
using fun_ptr_type = void (*) (void);
// Build one level of the table.
template <typename X, typename ...Ys>
constexpr std::array<fun_ptr_type, sizeof...(Ys)>
  jump_table_inner = {{&foo<X, Ys>...}};
// Type doesn't matter, we're just declaring a primary template that we're
// about to partially specialize.
template <typename X, typename Y> void *jump_table;
// Build the complete table.
template <typename ...Xs, typename ...Ys>
constexpr std::array<std::array<fun_ptr_type, sizeof...(Ys)>, sizeof...(Xs)>
  jump_table<std::tuple<Xs...>, std::tuple<Ys...>> = {jump_table_inner<Xs, Ys...>...};
int main () {
  using tuple0 = std::tuple<int, char, double>;
  using tuple1 = std::tuple<float, unsigned long>;
  // Call function for (int, float).
  jump_table<tuple0, tuple1>[0][0]();
}

Clang 3.5在其C++14模式中接受了这一点。

产品扩展context( f<Xs, Ys>... ) /* not what we want */的正常解决方案是将其重写为context2( g<Xs, Ys...>... )。意味着g负责针对某些X扩展Ys,并且最终扩展针对所有Xs执行g。这种重写的结果是我们引入了额外的嵌套,从而引入了不同的上下文。

在我们的例子中,我们将有一个函数指针数组数组,而不是函数指针的平面数组您尝试的解决方案不同,尽管这些确实是我们关心的&foo<X, Y>函数指针,而且平坦化很简单。

#include <cassert>
#include <utility>
#include <array>
template<typename X, typename Y>
void foo() {}
using foo_type = void(*)();
template<typename... T>
struct list {
    static constexpr auto size = sizeof...(T);
};
template<typename X, typename Y, typename Indices = std::make_index_sequence<X::size * Y::size>>
struct dispatch;
template<
    template<typename...> class XList, typename... Xs
    , template<typename...> class YList, typename... Ys
    , std::size_t... Indices
>
struct dispatch<XList<Xs...>, YList<Ys...>, std::index_sequence<Indices...>> {
private:
    static constexpr auto stride = sizeof...(Ys);
    using inner_type = std::array<foo_type, stride>;
    using multi_type = inner_type[sizeof...(Xs)];
    template<typename X, typename... Yss>
    static constexpr inner_type inner()
    { return {{ &foo<X, Yss>... }}; }
    static constexpr multi_type multi_value = {
        inner<Xs, Ys...>()...
    };
public:
    static constexpr auto size = sizeof...(Xs) * sizeof...(Ys);
    static constexpr foo_type value[size] = {
        multi_value[Indices / stride][Indices % stride]...
    };
};
template<
    template<typename...> class XList, typename... Xs
    , template<typename...> class YList, typename... Ys
    , std::size_t... Indices
>
constexpr foo_type dispatch<XList<Xs...>, YList<Ys...>, std::index_sequence<Indices...>>::value[size];
int main()
{
    using dispatch_t = dispatch<
            list<int,   char, double>,
            list<float, unsigned long>
        >;
    constexpr auto&& table = dispatch_t::value;
    static_assert( dispatch_t::size == 6, "" );
    static_assert( table[0] == &foo<int,    float>, "" );
    static_assert( table[1] == &foo<int,    unsigned long>, "" );
    static_assert( table[2] == &foo<char,   float>, "" );
    static_assert( table[3] == &foo<char,   unsigned long>, "" );
    static_assert( table[4] == &foo<double, float>, "" );
    static_assert( table[5] == &foo<double, unsigned long>, "" );
}

Coliru演示。

实际上,您拥有的更像是两个列表(<X1,Y1><X2,Y2>…)的"zip",当列表的长度不同时,它就不起作用了。

要计算两者的"乘积",我认为必须使用辅助类才能使其工作。看看其他类似你的问题:如何创建类型列表的笛卡尔乘积?