如何在cuda中有效地将向量重复到矩阵

How to efficiently repeat a vector to a matrix in cuda?

本文关键字:向量 cuda 有效地      更新时间:2023-10-16

我想在cuda中重复一个向量来形成一个矩阵,避免太多的内存拷贝。向量和矩阵都在GPU上分配。

例如:

我有一个向量:
a = [1 2 3 4]

展开成矩阵:

b = [1 2 3 4;
     1 2 3 4;
     .......
     1 2 3 4]

我所尝试的是分配b的每个元素,但这涉及到大量GPU内存到GPU内存复制。

我知道这在matlab中很容易(使用repmat),但如何在cuda中有效地做到这一点?

EDIT根据注释,我已经将代码更新为可以处理行为主或列为主的底层存储的版本。

这样的代码应该相当快:

// for row_major, blocks*threads should be a multiple of vlen
// for column_major, blocks should be equal to vlen
template <typename T>
__global__ void expand_kernel(const T* vector, const unsigned vlen, T* matrix, const unsigned mdim, const unsigned col_major=0){
  if (col_major){
    int idx = threadIdx.x+blockIdx.x*mdim;
    T myval = vector[blockIdx.x];
    while (idx < ((blockIdx.x+1)*mdim)){
      matrix[idx] = myval;
      idx += blockDim.x;
      }
    }
  else{
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    T myval = vector[idx%vlen];
    while (idx < mdim*vlen){
      matrix[idx] = myval;
      idx += gridDim.x*blockDim.x;
      }
    }
}

这假设您的矩阵的维度是mdim行x vlen列(似乎是您在问题中概述的)

您可以调整网格和块的尺寸,以找出在您的特定GPU上最快的工作方式。对于行为主的情况,从每个块256或512个线程开始,并将块的数量设置为等于或大于GPU中SMs数量的4倍。选择网格和块尺寸的乘积等于矢量长度vlen的整数倍。如果这是困难的,选择一个任意的,但"大"的线程块大小,如250或500,应该不会导致太多的效率损失。

对于列为主的情况,选择每个块256或512个线程,并选择与向量长度vlen相等的块数。如果vlen> 65535,您将需要为计算能力3.0或更高版本编译此代码。如果vlen很小,可能小于32,则该方法的效率可能会显著降低。如果您将每个块的线程数增加到GPU的最大值(512或1024),则会发现一些缓解。可能还有其他"扩展"实现,它们可能更适合列为主的"窄"矩阵情况。例如,对列主代码的直接修改将允许每个向量元素两个块,或者每个向量元素四个块,然后启动的总块将是2* vlen或4* vlen,例如。

下面是一个完整的工作示例,以及带宽测试的运行,以演示上述代码达到bandwidthTest所指示的吞吐量的约90%:
$ cat t546.cu
#include <stdio.h>
#define W 512
#define H (512*1024)
// for row_major, blocks*threads should be a multiple of vlen
// for column_major, blocks should be equal to vlen
template <typename T>
__global__ void expand_kernel(const T* vector, const unsigned vlen, T* matrix, const unsigned mdim, const unsigned col_major=0){
  if (col_major){
    int idx = threadIdx.x+blockIdx.x*mdim;
    T myval = vector[blockIdx.x];
    while (idx < ((blockIdx.x+1)*mdim)){
      matrix[idx] = myval;
      idx += blockDim.x;
      }
    }
  else{
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    T myval = vector[idx%vlen];
    while (idx < mdim*vlen){
      matrix[idx] = myval;
      idx += gridDim.x*blockDim.x;
      }
    }
}
template <typename T>
__global__ void check_kernel(const T* vector, const unsigned vlen, T* matrix, const unsigned mdim, const unsigned col_major=0){
  unsigned i = 0;
  while (i<(vlen*mdim)){
    unsigned idx = (col_major)?(i/mdim):(i%vlen);
    if (matrix[i] != vector[idx]) {printf("mismatch at offset %dn",i); return;}
    i++;}
}
int main(){
  int *v, *m;
  cudaMalloc(&v, W*sizeof(int));
  cudaMalloc(&m, W*H*sizeof(int));
  int *h_v = (int *)malloc(W*sizeof(int));
  for (int i = 0; i < W; i++)
    h_v[i] = i;
  cudaMemcpy(v, h_v, W*sizeof(int), cudaMemcpyHostToDevice);
  // test row-major
  cudaEvent_t start, stop;
  cudaEventCreate(&start);
  cudaEventCreate(&stop);
  cudaEventRecord(start);
  expand_kernel<<<44, W>>>(v, W, m, H);
  cudaEventRecord(stop);
  float et;
  cudaEventSynchronize(stop);
  cudaEventElapsedTime(&et, start, stop);
  printf("row-majortime: %fms, bandwidth: %.0fMB/sn", et, W*H*sizeof(int)/(1024*et));
  check_kernel<<<1,1>>>(v, W, m, H);
  cudaDeviceSynchronize();
  // test col-major
  cudaEventRecord(start);
  expand_kernel<<<W, 256>>>(v, W, m, H, 1);
  cudaEventRecord(stop);
  cudaEventSynchronize(stop);
  cudaEventElapsedTime(&et, start, stop);
  printf("col-majortime: %fms, bandwidth: %.0fMB/sn", et, W*H*sizeof(int)/(1024*et));
  check_kernel<<<1,1>>>(v, W, m, H, 1);
  cudaDeviceSynchronize();
  return 0;
}
$ nvcc -arch=sm_20 -o t546 t546.cu
$ ./t546
row-majortime: 13.066944ms, bandwidth: 80246MB/s
col-majortime: 12.806720ms, bandwidth: 81877MB/s
$ /usr/local/cuda/samples/bin/x86_64/linux/release/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...
 Device 0: Quadro 5000
 Quick Mode
 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     5864.2
 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     6333.1
 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     88178.6
Result = PASS
$

CUDA 6.5, RHEL 5.5

这也可以使用CUBLAS Rank-1更新函数来实现,但它将比上述方法慢得多。