Glibc检测到*** ./a.输出:munmap_chunk():无效指针

glibc detected *** ./a.out: munmap_chunk(): invalid pointer:

本文关键字:chunk 无效 指针 munmap 检测 输出 Glibc      更新时间:2023-10-16

有很多这样的问题,但在看了一些情况后,我想这个问题是针对具体情况的,所以我发布了我的代码,并指出了问题发生的地方,你可以耐心阅读我的代码吗?

uniBTree.h

#ifndef uniBTree_H
#define uniBTree_H
#include "uniTreeNode.h"
#include <cassert>
template<class T>
class uniBTree {
    private:
      uniTreeNode<T> *root;
      int delete_helper(uniTreeNode<T> *);
      uniTreeNode<T> *insert_helper(uniTreeNode<T> *, const T);
      void in_print_helper(const uniTreeNode<T> *) const;
      void pre_print_helper(const uniTreeNode<T> *) const;
      void post_print_helper(const uniTreeNode<T> *) const;
    public:
      uniBTree(void);
      uniBTree(uniTreeNode<T> *r);
      ~uniBTree(void);
      void insert(const T i);
      void in_print(void) const;
      void pre_print(void) const;
      void post_print(void) const;
};
template<class T>
uniBTree<T>::uniBTree(void)
{
    root = NULL;
}
template<class T>
uniBTree<T>::uniBTree(uniTreeNode<T> *r)
{
    root = r;
}
template<class T>
int uniBTree<T>::delete_helper(uniTreeNode<T> *n)
{
    int count = 0;
    if (n == NULL)
        return 0;
    count += delete_helper(n->get_left());
    count += delete_helper(n->get_right());
    delete n;
    count++;
    return count;
}
template<class T>
uniBTree<T>::~uniBTree(void)
{
    int count = delete_helper(root);
    std::cout << "uniBTree<T>::~uniBTree<T>(void)n";
    std::cout << count << " nodes deletedn";
}
template<class T>
void uniBTree<T>::in_print() const
{
    in_print_helper(root);
}
template<class T>
void uniBTree<T>::pre_print() const
{
    pre_print_helper(root);
}
template<class T>
void uniBTree<T>::post_print() const
{
    post_print_helper(root);
}
template<class T>
void uniBTree<T>::in_print_helper(const uniTreeNode<T> *current) const
{
    if (current == NULL)
        return;
    in_print_helper(current->get_left());
    current->print();
    in_print_helper(current->get_right());
}
template<class T>
void uniBTree<T>::pre_print_helper(const uniTreeNode<T> *current) const
{
    if (current == NULL)
        return;
    current->print();
    pre_print_helper(current->get_left());
    pre_print_helper(current->get_right());
}
template<class T>
void uniBTree<T>::post_print_helper(const uniTreeNode<T> *current) const
{
    if (current == NULL)
        return;
    post_print_helper(current->get_left());
    post_print_helper(current->get_right());
    current->print();
}
template<class T>
void uniBTree<T>::insert(const T i)
{
    if (root == NULL)
        root = new uniTreeNode<T>(i, NULL, NULL);
    else
        insert_helper(root, i);
}
template<class T>
uniTreeNode<T> *uniBTree<T>::insert_helper(uniTreeNode<T> *current, const T i)
{
    if (current == NULL) {//this is will only dealed by attempting to visit leaves...
        //if root is null, it'll be handled in insert
        uniTreeNode<T> *child = new uniTreeNode<T>(i, NULL, NULL);
        assert(child != NULL);
        return(child);
    }
    if (i < current->get_data()) 
        current->set_left(insert_helper(current->get_left(), i));
    else 
        current->set_right(insert_helper(current->get_right(), i));
    return(current);
}
#endif

uniTreeNode.h

#ifndef uniTreeNode_H//for redefinition
#define uniTreeNode_H
#include <iostream>
//using namespace std; don't use using namespace xxx and include source file in .h file
template<typename T>
class uniTreeNode {
     private:
         T data;
         uniTreeNode<T> *left;
         uniTreeNode<T> *right;
     public:
         //uniTreeNode<T>(void);
         uniTreeNode(T d, uniTreeNode<T> *l, uniTreeNode<T> *r);
         T get_data(void) const;
         uniTreeNode<T> *get_left(void) const;
         uniTreeNode<T> *get_right(void) const;
         void set_left(uniTreeNode<T> *l);
         void set_right(uniTreeNode<T> *r);
         void print() const;
};
template<typename T>
uniTreeNode<T>::uniTreeNode/*remember syntax here*/
(T d , uniTreeNode<T> *l = NULL, uniTreeNode<T> *r = NULL)
{
     data = d;
     left = l;
     right = r;
}
template<typename T>
T uniTreeNode<T>::get_data(void) const
{
     return data;
}
template<typename T>
uniTreeNode<T> * uniTreeNode<T>::get_left(void) const
{
    return left;
}
template<typename T>
uniTreeNode<T> * uniTreeNode<T>::get_right(void) const
{
    return right;
}
template<typename T>
void uniTreeNode<T>::set_left(uniTreeNode<T> *l)
{
    left = l;
}
template<typename T>
void uniTreeNode<T>::set_right(uniTreeNode<T> *r)
{
    right = r;
}
template<typename T>
void uniTreeNode<T>::print() const
{
   std::cout << "data is " << data << std::endl;
}
#endif

date.h

#include <ostream>
class date{
    private:
            int y;
            int m;
            int d;
    public:
            date();//default constructor
            date(const long int);//used by cplr as convert constructor
            date(int, int , int);
            friend bool operator<(const date &d1, const date &d2);//d1 is for left-hand date
            friend bool operator>(const date &d1, const date &d2);
            bool operator==(date d);
            bool operator!=(date d);
            date &operator=(date d);
            friend std::ostream &operator<<(std::ostream &out, date d);
            friend std::istream &operator>>(std::istream &in, date d);
};

date.cc

#include <iostream>
#include <cstdio>
#include <time.h>
#include <cstring>
#include "date.h"
date::date(){
    y = m = d = 0;
}
date::date(int Y, int M, int D){
    y = Y;
    m = M;
    d = D;
}
date::date(const long int s){//#second since 1970/1/1 00:00:00
    struct tm *buf;
    buf = gmtime(&s);
    y = (buf->tm_year+1900);
    m = buf->tm_mon+1;
    d = buf->tm_mday;
}
bool operator<(const date &d1, const date &d2){
     bool result;//sizeof(bool) is 1
     if(d1.y < d2.y) result = true;
     else if(d1.y == d2.y){
           if(d1.m < d2.m) result = true;
           else if(d1.m == d2.m){
                   if(d1.d < d2.d) result = true;
                   else result = false;
           }
           else result = false;
     }
     else result = false;
     return result;
}
bool operator>(const date &d1, const date &d2){
    bool result;//sizeof(bool) is 1
    if(d1.y > d2.y) result = true;
    else if(d1.y == d2.y){
            if(d1.m > d2.m) result = true;
            else if(d1.m == d2.m){
                    if(d1.d > d2.d) result = true;
                    else result = false;
            }
            else result = false;
    }
    else result = false;
    return result;
}
bool date::operator==(date d){
    return (this->y==d.y && this->m==d.m && this->d==d.d); 
}
bool date::operator!=(date d){
    return (this->y!=d.y || this->m!=d.m || this->d!=d.d);
}
date &date::operator=(date d){
    this->y = d.y;
    this->m = d.m;
    this->d = d.d;
    return *this;
}
std::ostream &operator<<(std::ostream &out, date d){
    out << d.y << "/" << d.m << "/" << d.d << std::endl;
    return out;
}
std::istream &operator>>(std::istream &in, date d){
    in >> d.y >> d.m >> d.d ;
    return in;
}

主要功能
#include "uniBTree.h"
#include "date.h"
#include <cstdio>
int main(){
    date d1 = 100000000;//convert constructor
    uniTreeNode<date> node(d1, NULL, NULL);
    printf("%p %pn", node.get_left(), node.get_right());
    std::cout << node.get_data() << std::endl;

    date d2 = 86401;
    date d3 = 200000000;
    uniBTree<date> btree(&node);
    return 0;
}

我测试了,发现是&node无效。我认为这是因为它试图在程序结束时"释放"btree,当遇到根时,因为它指向node,它不能执行好事情。

我有两个问题:

  1. 如果像我所做的那样构造一个node,(uniTreeNode<date> node(xxx, xxx, xxx);)是程序生成的"NEW"对象吗?
  2. 对于uniTreeNode<T>类模板,我没有写它的析构函数!!所以,就像我上面说的,当btree的根节点指向的节点被释放时,是否存在所谓的"默认析构函数"?这里叫这个名字吗?最重要的是,程序是否使用了"DELETE"?

如果上面两个问题中有一个是否定的,这就是问题产生的原因吗?

编辑:现在的问题是显示,但我怎么能调整我的代码来解决这个问题?有人知道吗?

编辑:就像这样修改:

uniTreeNode<date> *nodeptr = new uniTreeNode<date>(d1, NULL, NULL);

注。如果不间接使用指针指向b树的根节点(即使用new),则不使用new,也不应使用delete;通过这种选择,uniTreenode的delete_helper应该使用:

if(n != root){
    delete n;
    count++;
}

但这并不能解决问题…最终的问题是:

"can we release object without using delete(because it isn't obtained from newing) in c++?"

回答:

我的"释放"/"分配"实际上是在说内存,没有指定它是如何完成的…但这毕竟是个大问题

你说"你可以这样做,但它几乎总是错误的答案";你的意思是我应该使用DELETE而不是直接调用析构函数?(实际上,这似乎根本不合适)-->请在这里调整

Btw,对于那些实例NEWed由我,如果我想释放他们,是否需要他们被一个语句删除?或者它们也会像那些自动变量实例一样被处理?(当超出作用域时,由编译器返回)-->如有需要,请更正以上内容

另一个问题:是否有任何现有的语句,我可以使用做的事情,像DELETE,为那些自动实例?或者,如果我愿意,我只能调用析构函数?

回答你的问题:

  1. 不,它在编译时在堆栈上分配内存,并在其上运行构造函数。
  2. 不能删除未使用new分配的指针。当对象节点在main()中完成时,编译器为uniTreeNode插入一个对析构函数的调用(默认或非默认)。

因此,可以推测,不能在没有使用new分配的指针上使用delete。

最简单的修复方法是使用new: 分配节点
uniTreeNode<date>* node = new uniTreeNode<date>(d1);
uniBTree<date> btree(node);

学习使用valgrind

它马上告诉你问题是什么,你正在删除uniBTree析构函数中的堆栈对象

==23648== Invalid free() / delete / delete[] / realloc()
==23648==    at 0x4A0736C: operator delete(void*) (vg_replace_malloc.c:480)
==23648==    by 0x400D78: uniBTree<date>::delete_helper(uniTreeNode<date>*) (uniBTree.h:48)
==23648==    by 0x400CD5: uniBTree<date>::~uniBTree() (uniBTree.h:56)
==23648==    by 0x400B91: main (main.cc:17)
==23648==  Address 0x7fefffab0 is on thread 1's stack
==23648== 

析构函数调用delete,但&node不是由new创建的(您可以看出,因为您没有编写new !)