访问Boost MultiArray中元素的最快方法

Fastest method of accessing elements in Boost MultiArray

本文关键字:方法 元素 Boost MultiArray 访问      更新时间:2023-10-16

使用元素选择操作符访问多数组的元素,还是使用迭代器遍历多数组,哪个更快?

在我的例子中,我需要对multiarray的所有元素进行一次完整的传递。

访问boost::multi_array的每个元素的最快方法是通过data()num_elements()

使用data(),您可以访问底层原始存储(包含数组数据的连续块),因此不需要进行多次索引计算(还要考虑multi_array可以从不同于0的基数对数组进行索引,这是一个进一步的复杂性)。

一个简单的测试给出:

g++ -O3 -fomit-frame-pointer -march=native   (GCC v4.8.2)
Writing (index): 9.70651
Writing (data):  2.22353
Reading (index): 4.5973 (found 1)
Reading (data):  3.53811 (found 1)
clang++ -O3 -fomit-frame-pointer -march=native   (CLANG v3.3)
Writing (index): 5.49858
Writing (data):  2.13678
Reading (index): 5.07324 (found 1)
Reading (data):  2.55109 (found 1)

默认情况下,boost访问方法执行范围检查。如果提供的索引超出了为数组定义的范围,则断言将中止程序。要禁用范围检查,您可以在应用程序中包含multi_array.hpp之前定义BOOST_DISABLE_ASSERTS预处理器宏。

这将大大减少性能差异:

g++ -O3 -fomit-frame-pointer -march=native   (GCC v4.8.2)
Writing (index): 3.15244
Writing (data):  2.23002
Reading (index): 1.89553 (found 1)
Reading (data):  1.54427 (found 1)
clang++ -O3 -fomit-frame-pointer -march=native   (CLANG v3.3)
Writing (index): 2.24831
Writing (data):  2.12853
Reading (index): 2.59164 (found 1)
Reading (data):  2.52141 (found 1)

性能差异增加(即data()更快):

  • 具有更高维度数;
  • 元素较少的
  • (对于大量元素,对元素的访问并不像将这些元素加载到CPU缓存中的缓存压力那么重要)。预取器将在那里尝试加载这些元素,这将占用很大比例的时间)。
无论如何,这种优化不太可能在实际程序中产生可测量的差异。您不应该担心这个问题,除非您已经通过广泛的测试最终确定它是某种瓶颈的来源。 源:

#include <chrono>
#include <iostream>
// #define BOOST_DISABLE_ASSERTS
#include <boost/multi_array.hpp>
int main()
{
  using array3 = boost::multi_array<unsigned, 3>;
  using index = array3::index;
  using clock = std::chrono::high_resolution_clock;
  using duration = std::chrono::duration<double>;
  constexpr unsigned d1(300), d2(400), d3(200), sup(100);
  array3 A(boost::extents[d1][d2][d3]);
  // Writing via index
  const auto t_begin1(clock::now());
  unsigned values1(0);
  for (unsigned n(0); n < sup; ++n)
    for (index i(0); i != d1; ++i)
      for (index j(0); j != d2; ++j)
        for (index k(0); k != d3; ++k)
          A[i][j][k] = ++values1;
  const auto t_end1(clock::now());
  // Writing directly
  const auto t_begin2(clock::now());
  unsigned values2(0);
  for (unsigned n(0); n < sup; ++n)
  {
    const auto sup(A.data() + A.num_elements());
    for (auto i(A.data()); i != sup; ++i)
      *i = ++values2;
  }
  const auto t_end2(clock::now());
  // Reading via index
  const auto t_begin3(clock::now());
  bool found1(false);
  for (unsigned n(0); n < sup; ++n)
    for (index i(0); i != d1; ++i)
      for (index j(0); j != d2; ++j)
        for (index k(0); k != d3; ++k)
          if (A[i][j][k] == values1)
            found1 = true;
  const auto t_end3(clock::now());
  // Reading directly
  const auto t_begin4(clock::now());
  bool found2(false);
  for (unsigned n(0); n < sup; ++n)
  {
    const auto sup(A.data() + A.num_elements());
    for (auto i(A.data()); i != sup; ++i)
      if (*i == values2)
        found2 = true;
  }
  const auto t_end4(clock::now());
  std::cout << "Writing (index): "
            << std::chrono::duration_cast<duration>(t_end1 - t_begin1).count()
            << std::endl
            << "Writing (data):  "
            << std::chrono::duration_cast<duration>(t_end2 - t_begin2).count()
            << std::endl
            << "Reading (index): "
            << std::chrono::duration_cast<duration>(t_end3 - t_begin3).count()
            << " (found " << found1 << ")" << std::endl
            << "Reading (data):  "
            << std::chrono::duration_cast<duration>(t_end4 - t_begin4).count()
            << " (found " << found2 << ")" << std::endl;
  return 0;
}