std字符串串联性能

std string concatenation performance

本文关键字:性能 字符串 std      更新时间:2023-10-16

在性能方面,现代C++编译器中的以下函数有什么区别吗?

std::string ConcatA(const std::string& a, const std::string& b, const std::string& c)
{
    return a + b + c;
}
std::string ConcatB(const std::string& a, const std::string& b, const std::string& c)
{
    std::string r = a;
    r += b;
    r += c;
    return r;
}

ConcatB有1个临时字符串,而ConcatA有2个临时字符串。因此,ConcatB的速度是前者的两倍。

$cat cata.cpp

#include <string>
#include <iostream>
std::string ConcatA(const std::string& a, const std::string& b, const std::string& c)
{
    return a + b + c;
}
int main(){
  std::string aa="aa";
  std::string bb="bb";
  std::string cc="cc";
  int count = 0;
  for(int ii = 0; ii < 10000000; ++ii) {
    count += ConcatA(aa, bb, cc).size();
  }
    std::cout<< count <<std::endl;
}

$cat catb.cpp

#include <string>
#include <iostream>
std::string ConcatB(const std::string& a, const std::string& b, const std::string& c)
{
    std::string r = a;
    r += b;
    r += c;
    return r;
}
int main(){
  std::string aa="aa";
  std::string bb="bb";
  std::string cc="cc";
  int count = 0;
  for(int ii = 0; ii < 10000000; ++ii) {
    count += ConcatB(aa, bb, cc).size();
  }
    std::cout<< count <<std::endl;
}

$clang++-v

Apple LLVM version 5.0 (clang-500.2.79) (based on LLVM 3.3svn)
Target: x86_64-apple-darwin13.1.0
Thread model: posix
$ clang++ cata.cpp
$ time ./a.out
60000000
real    0m1.122s
user    0m1.118s
sys 0m0.003s
$ clang++ catb.cpp
$ time ./a.out
60000000
real    0m0.599s
user    0m0.596s
sys 0m0.002s
$

我用MinGW(TDM)4.8.1编译了它,并优化了选项-fdump树,没有-O2

第一个像一样移动

string tmp = a+b; // that mean create new string g, g += b, tmp = g (+dispose g)
tmp += c;
return tmp; // and dispose tmp

第二种方法是

string tmp = a; // just copy a to tmp
tmp += b;
tmp += c;
return tmp; // and dispose tmp

它看起来就像这个

  void * D.20477;
  struct basic_string D.20179;
  <bb 2>:
  D.20179 = std::operator+<char, std::char_traits<char>, std::allocator<char> > (a_1(D), b_2(D)); [return slot optimization]
  *_3(D) = std::operator+<char, std::char_traits<char>, std::allocator<char> > (&D.20179, c_4(D)); [return slot optimization]
  <bb 3>:
  <bb 4>:
  std::basic_string<char>::~basic_string (&D.20179);
  D.20179 ={v} {CLOBBER};
<L1>:
  return _3(D);
<L2>:
  std::basic_string<char>::~basic_string (&D.20179);
  _5 = __builtin_eh_pointer (1);
  __builtin_unwind_resume (_5);

  void * D.20482;
  struct string r [value-expr: *<retval>];
  <bb 2>:
  std::basic_string<char>::basic_string (r_1(D), a_2(D));
  std::basic_string<char>::operator+= (r_1(D), b_3(D));
  <bb 3>:
  std::basic_string<char>::operator+= (r_1(D), c_4(D));
  <bb 4>:
<L0>:
  return r_1(D);
<L1>:
  std::basic_string<char>::~basic_string (r_1(D));
  _5 = __builtin_eh_pointer (1);
  __builtin_unwind_resume (_5);

因此,在应用-O2优化编译器后,将ConcatB函数保持在几乎相同的视图中,并通过内联函数、向内存分配部分添加常数值、声明新函数来使用ConcatA,但最有价值的部分保持不变。

ConcatA:

  D.20292 = std::operator+<char, std::char_traits<char>, std::allocator<char> > (a_2(D), b_3(D)); [return slot optimization]
  *_5(D) = std::operator+<char, std::char_traits<char>, std::allocator<char> > (&D.20292, c_6(D));

ConcatB:

  std::basic_string<char>::basic_string (r_3(D), a_4(D));
  std::basic_string<char>::append (r_3(D), b_6(D));
  std::basic_string<char>::append (r_3(D), c_8(D));

因此,很明显,ConcatB比ConcatA更好,因为它做的分配操作更少,当你试图优化这么小的代码片段时,这是非常昂贵的。