CUFFT:当输入是倾斜阵列时,如何计算fft

CUFFT : How to calculate the fft when the input is a pitched array

本文关键字:何计算 计算 fft 输入 阵列 倾斜 CUFFT      更新时间:2023-10-16

我正试图找到一个动态分配数组的fft。使用cudaMemcpy2D将输入阵列从主机复制到设备。然后进行fft(cufftExecR2C),并将结果从设备复制回主机。

所以我最初的问题是如何在fft中使用音高信息。然后我在这里找到了一个答案——CUFFT:如何计算音高指针的fft?

但不幸的是,它不起作用。我得到的结果是垃圾值。下面给出的是我的代码。

#define NRANK 2
#define BATCH 10
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cufft.h>
#include <stdio.h> 
#include <iomanip> 
#include <iostream>
#include <vector>
using namespace std;
const size_t NX = 4;
const size_t NY = 6;
int main()
{ 
// Input array (static) - host side 
float h_in_data_static[NX][NY] ={ 
{0.7943 ,   0.6020 ,   0.7482  ,  0.9133  ,  0.9961 , 0.9261},
{0.3112 ,   0.2630 ,   0.4505  ,  0.1524  ,  0.0782 ,  0.1782},
{0.5285 ,   0.6541 ,   0.0838  ,  0.8258  ,  0.4427,  0.3842},
{0.1656 ,   0.6892 ,   0.2290  ,  0.5383  ,  0.1067,  0.1712}
};
// --------------------------------
// Input array (dynamic) - host side 
float *h_in_data_dynamic = new float[NX*NY];  
// Set the values
size_t h_ipitch;
for (int r = 0; r < NX; ++r)  // this can be also done on GPU
{    
for (int c = 0; c < NY; ++c)
{   h_in_data_dynamic[NY*r + c] = h_in_data_static[r][c];   }
}
// --------------------------------
// Output array - host side
float2 *h_out_data_temp = new float2[NX*(NY/2+1)] ; 

// Input and Output array - device side 
cufftHandle plan;
cufftReal *d_in_data;      
cufftComplex * d_out_data;
int n[NRANK] = {NX, NY};
//  Copy input array from Host to Device
size_t ipitch;
cudaError  cudaStat1 =  cudaMallocPitch((void**)&d_in_data,&ipitch,NY*sizeof(cufftReal),NX);    
cout << cudaGetErrorString(cudaStat1) << endl;
cudaError  cudaStat2 =  cudaMemcpy2D(d_in_data,ipitch,h_in_data_dynamic,NY*sizeof(float),NY*sizeof(float),NX,cudaMemcpyHostToDevice);   
cout << cudaGetErrorString(cudaStat2) << endl;
//  Allocate memory for output array - device side
size_t opitch;
cudaError  cudaStat3 =  cudaMallocPitch((void**)&d_out_data,&opitch,(NY/2+1)*sizeof(cufftComplex),NX);  
cout << cudaGetErrorString(cudaStat3) << endl;
//  Performe the fft
int rank = 2; // 2D fft     
int istride = 1, ostride = 1; // Stride lengths
int idist = 1, odist = 1;     // Distance between batches
int inembed[] = {ipitch, NX}; // Input size with pitch
int onembed[] = {opitch, NX}; // Output size with pitch
int batch = 1;
cufftPlanMany(&plan, rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_R2C, batch);
//cufftPlan2d(&plan, NX, NY , CUFFT_R2C);
cufftSetCompatibilityMode(plan, CUFFT_COMPATIBILITY_NATIVE);
cufftExecR2C(plan, d_in_data, d_out_data);
cudaThreadSynchronize();
// Copy d_in_data back from device to host
cudaError  cudaStat4 = cudaMemcpy2D(h_out_data_temp,(NY/2+1)*sizeof(float2), d_out_data, opitch, (NY/2+1)*sizeof(cufftComplex), NX, cudaMemcpyDeviceToHost); 
cout << cudaGetErrorString(cudaStat4) << endl;
// Print the results
for (int i = 0; i < NX; i++)    
{
for (int j =0 ; j< NY/2 + 1; j++)       
printf(" %f + %fi",h_out_data_temp[i*(NY/2+1) + j].x ,h_out_data_temp[i*(NY/2+1) + j].y);
printf("n");    
}
cudaFree(d_in_data);
return 0;
}

我认为问题出在cufftPlanMany上。我该如何解决这个问题?

您可能需要仔细研究文档的高级数据布局部分。

我认为前面链接的问题有点令人困惑,因为该问题以相反的顺序传递widthheight参数,这是我对cufft 2D计划的期望。然而,答案会模仿这个顺序,所以它至少是一致的。

其次,您在上一个问题中遗漏了inembedonembed中传递的"变桨"参数与您将从cudaMallocPitch操作中接收的变桨参数不同。它们必须按输入和输出数据集中每个数据元素的字节数进行缩放。实际上,我不完全确定这是否是inembedonembed参数的预期用途,但它似乎有效。

当我调整您的代码以考虑上述两个更改时,我似乎得到了有效的结果,至少它们看起来在合理的范围内。你现在已经发布了几个关于2D FFT的问题,你说结果不正确。我不能在脑子里做这些2D FFT,所以我建议你在未来指出你期望的数据。

这是我做的改变:

#define NRANK 2
#define BATCH 10
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cufft.h>
#include <stdio.h>
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
const size_t NX = 4;
const size_t NY = 6;
int main()
{
// Input array (static) - host side
float h_in_data_static[NX][NY] ={
{0.7943 ,   0.6020 ,   0.7482  ,  0.9133  ,  0.9961 , 0.9261},
{0.3112 ,   0.2630 ,   0.4505  ,  0.1524  ,  0.0782 ,  0.1782},
{0.5285 ,   0.6541 ,   0.0838  ,  0.8258  ,  0.4427,  0.3842},
{0.1656 ,   0.6892 ,   0.2290  ,  0.5383  ,  0.1067,  0.1712}
};
// --------------------------------
// Input array (dynamic) - host side
float *h_in_data_dynamic = new float[NX*NY];
// Set the values
size_t h_ipitch;
for (int r = 0; r < NX; ++r)  // this can be also done on GPU
{
for (int c = 0; c < NY; ++c)
{   h_in_data_dynamic[NY*r + c] = h_in_data_static[r][c];   }
}
// --------------------------------
int owidth = (NY/2)+1;
// Output array - host side
float2 *h_out_data_temp = new float2[NX*owidth] ;

// Input and Output array - device side
cufftHandle plan;
cufftReal *d_in_data;
cufftComplex * d_out_data;
int n[NRANK] = {NX, NY};
//  Copy input array from Host to Device
size_t ipitch;
cudaError  cudaStat1 =  cudaMallocPitch((void**)&d_in_data,&ipitch,NY*sizeof(cufftReal),NX);
cout << cudaGetErrorString(cudaStat1) << endl;
cudaError  cudaStat2 =  cudaMemcpy2D(d_in_data,ipitch,h_in_data_dynamic,NY*sizeof(float),NY*sizeof(float),NX,cudaMemcpyHostToDevice);
cout << cudaGetErrorString(cudaStat2) << endl;
//  Allocate memory for output array - device side
size_t opitch;
cudaError  cudaStat3 =  cudaMallocPitch((void**)&d_out_data,&opitch,owidth*sizeof(cufftComplex),NX);
cout << cudaGetErrorString(cudaStat3) << endl;
//  Performe the fft
int rank = 2; // 2D fft
int istride = 1, ostride = 1; // Stride lengths
int idist = 1, odist = 1;     // Distance between batches
int inembed[] = {NX, ipitch/sizeof(cufftReal)}; // Input size with pitch
int onembed[] = {NX, opitch/sizeof(cufftComplex)}; // Output size with pitch
int batch = 1;
if ((cufftPlanMany(&plan, rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_R2C, batch)) != CUFFT_SUCCESS) cout<< "cufft error 1" << endl;
//cufftPlan2d(&plan, NX, NY , CUFFT_R2C);
if ((cufftSetCompatibilityMode(plan, CUFFT_COMPATIBILITY_NATIVE)) != CUFFT_SUCCESS) cout << "cufft error 2" << endl;
if ((cufftExecR2C(plan, d_in_data, d_out_data)) != CUFFT_SUCCESS) cout << "cufft error 3" << endl;
cudaDeviceSynchronize();
// Copy d_in_data back from device to host
cudaError  cudaStat4 = cudaMemcpy2D(h_out_data_temp,owidth*sizeof(float2), d_out_data, opitch, owidth*sizeof(cufftComplex), NX, cudaMemcpyDeviceToHost);
cout << cudaGetErrorString(cudaStat4) << endl;
// Print the results
for (int i = 0; i < NX; i++)
{
for (int j =0 ; j< owidth; j++)
printf(" %f + %fi",h_out_data_temp[i*owidth + j].x ,h_out_data_temp[i*owidth + j].y);
printf("n");
}
cudaFree(d_in_data);
return 0;
}