自动与三元运算符和模板

auto with ternary operator and templates

本文关键字:运算符 三元      更新时间:2023-10-16

我有一个模板类

template <typename T>
class foo;

T 有 2 个有效值,分别对应于:

using fooT1 = class foo<T1>;
using fooT2 = class foo<T2>;

我想编写如下所示的代码:

const auto* fooPtr = useFooT1 ? getFooT1Ptr() : getFooT2Ptr();

因为在此函数中使用 fooPtr 的代码不依赖于 fooPtr 是类型是 fooT1 还是fooT2

但是,我收到以下编译器错误:

error: conditional expression between distinct pointer types ...

我知道根据C++标准,应该有一个可以强制转换为的通用类型,因此这种方法可能不起作用。

在不复制大量代码的情况下实现此功能的好方法是什么?

事实上,C++ 是静态类型的,因此变量的类型不能依赖于运行时条件。

相反,将通用代码放入模板中:

template <typename T> doStuff(foo<T> * f) {
    // stuff that works with any `foo` type
}

并根据运行时变量调用不同的专用化

if (useFooT1) {
    doStuff(getFooT1Ptr());
} else {
    doStuff(getFooT2Ptr());
}

如果布尔变量 useFooT1 在编译时已知,则可以实现编译时开关,例如

FooT1 const* getFooPtr(std::true_type /* useFooT1 */) { 
    return getFooT1Ptr(); 
}
FooT2 const* getFooPtr(std::false_type /* !useFooT1 */) { 
    return getFooT2Ptr(); 
}
/* ... */
auto const* fooPtr = getFooPtr(std::integral_constant<bool, useFooT1>());

这也可以推广到两种以上的类型,并且交换机可以直接依赖于类型 T1/T2。

另请参阅:是否可以使用标记调度来确定返回类型和从模板切换传递的类型以及许多其他类型。

下面是一个示例(实际上是 2 种不同的方法:V1/V2)如何使用一个可以在内部使用不同类型的 std:: 容器的函数。请注意,使用的容器类型实际上可以改变函数的结果(因为容器的内部排序),这就是我在这里展示的内容。函数 returnMaxPointV1/2 采用布尔参数,内部具有部分泛型代码和部分专用代码。这与使用模板的方法相反,其中函数调用者必须是专门的(!在编译时!),但函数体是泛型的。这里的调用者是通用的(!在运行时!),但主体是专用的。

#include <vector>
#include <set>
#include <iostream>
#include <thread>         // std::this_thread::sleep_for
#include <chrono>         // std::chrono::seconds
struct Point2D {
    int x1;
    int x2;
    bool operator < (const Point2D& rhs) const {
        return x1-10*x2 < rhs.x1-10*rhs.x2;
    }
};

Point2D points[4] = { { 10,2 },{ 2,2 },{ 0,1 },{ 10,4 } };

namespace returnMaxInlines
{
    inline  Point2D FindMax(Point2D a, Point2D b) {
        return (a.x1 > b.x1) ? a : b;
    }
}
/*
The function returnMaxPoint fills a container with points that satisfy the condition x2 >= 2.
You can select what kind of containter to use  by using the bool containterTypeSet
the function then finds the point with maximum x1 in the container, but because
there are some points with the same x1 it will return the first one encountered,
which may be a different one depending on the container type,
because the points may be differently ordered in the container.
*/
Point2D returnMaxPointV1(bool containterTypeSet)
{
    using namespace returnMaxInlines;       // the inline function is only accessible locally in this function (because of the namespace)
    Point2D     maxPoint = { 0,0 };
    if (containterTypeSet == true) {
        std::set<Point2D>   container;
        for (int cnt = 0; cnt < 4; ++cnt) {
            if (points[cnt].x2 >= 2) {
                container.insert(points[cnt]);
            }
        }
        for (auto it = container.begin(); it != container.end(); ++it) {
            maxPoint = FindMax(maxPoint, *it);      // this part of the code is generic for both cases of bool containterTypeSet, it is an inline function
        }
    }
    else {
        std::vector<Point2D>    container;
        for (int cnt = 0; cnt < 4; ++cnt) {
            if (points[cnt].x2 >= 2) {
                container.push_back(points[cnt]);
            }
        }
        for (auto it = container.begin(); it != container.end(); ++it) {
            maxPoint = FindMax(maxPoint, *it);      // this part of the code is generic for both cases of bool containterTypeSet, it is an inline function
        }
    }
    return maxPoint;
}
/* Alternative implementation
    No inline function is needed, but you need to have all variables for both options declared in scope
    and you need to add many if-statements, thus branching (but maybe the compiler can optimize this out (which will yield some kind of version V1)
*/
Point2D returnMaxPointV2(bool containterTypeSet)
{
    Point2D                 maxPoint = { 0,0 };
    std::set<Point2D>       containerSet;
    std::vector<Point2D>    containerVector;
    // specialized code
    if (containterTypeSet) {
        for (int cnt = 0; cnt < 4; ++cnt) {
            if (points[cnt].x2 >= 2) {
                containerSet.insert(points[cnt]);
            }
        }
    }
    else{
        for (int cnt = 0; cnt < 4; ++cnt) {
            if (points[cnt].x2 >= 2) {
                containerVector.push_back(points[cnt]);
            }
        }
    }
    std::set<Point2D>::iterator         SetIterator;
    std::vector<Point2D>::iterator      VectorIterator;
    const Point2D   *ScopePoint;
    bool            foolCompiler;       // the compiler was tripping if both types of the tenary operator (?:) were not of the same type, so I made the statement such that the statement was of type bool.
    for(foolCompiler = containterTypeSet? ((SetIterator = containerSet.begin()) == SetIterator): ((VectorIterator = containerVector.begin()) == VectorIterator);
        containterTypeSet ? SetIterator != containerSet.end() : VectorIterator != containerVector.end();
        foolCompiler = containterTypeSet ? ((SetIterator++) == SetIterator) : ((VectorIterator++) == VectorIterator)
        ){
        ScopePoint = containterTypeSet ? &(*SetIterator) : &(*VectorIterator);
        // generic code 
        maxPoint = (maxPoint.x1 > ScopePoint->x1) ? maxPoint : *ScopePoint;
    }
    return maxPoint;
}
int main()
{
    Point2D result;
    result = returnMaxPointV1(true);
    std::cout << "result1: (" << result.x1 << "," << result.x2 << ")" << std::endl;
    result = returnMaxPointV1(false);
    std::cout << "result2: (" << result.x1 << "," << result.x2 << ")" << std::endl;
    result = returnMaxPointV2(true);
    std::cout << "result3: (" << result.x1 << "," << result.x2 << ")" << std::endl;
    result = returnMaxPointV2(false);
    std::cout << "result4: (" << result.x1 << "," << result.x2 << ")" << std::endl;
    std::this_thread::sleep_for(std::chrono::seconds(10));
}

程序的输出为:

result1: (10,2)
result2: (10,4)
result3: (10,2)
result4: (10,4)