ColorMap in boost::graph 隐式图形用于metric_tsp_approx

ColorMap in boost::graph implicit graph for metric_tsp_approx

本文关键字:用于 metric approx 图形 tsp in boost graph ColorMap      更新时间:2023-10-16

我正在尝试完成以下操作:有一个函数computeTspTour(size, start, distance),它让我近似于从start开始的size多个顶点的最短游览。 在这里,distance是一个函数对象,它接受两个索引并返回它们之间的距离。

我想利用boost::graphmetric_tsp_approx。 为此,我需要一张完整的基数图size,所以我想为此使用隐式定义的图,以避免创建一个无用的琐碎巨大图结构。

一切似乎都工作正常,但我的问题是metric_tsp_approx在某些时候使用 dijkstra_shortest_paths ,它定义了ColorMap . 这会导致以下两个问题:

/usr/include/boost/graph/dijkstra_shortest_paths.hpp:373:60: error: no type named 'value_type' in 'struct boost::property_traits<boost::bgl_named_params<boost::detail::_project2nd<double, double>, boost::distance_combine_t, boost::bgl_named_params<std::less<double>, boost::distance_compare_t, boost::bgl_named_params<boost::iterator_property_map<__gnu_cxx::__normal_iterator<long unsigned int*, std::vector<long unsigned int> >, boost::typed_identity_property_map<long unsigned int>, long unsigned int, long unsigned int&>, boost::vertex_predecessor_t, boost::bgl_named_params<EdgeWeightMap<double>, boost::edge_weight_t, boost::bgl_named_params<boost::typed_identity_property_map<long unsigned int>, boost::vertex_index_t, boost::bgl_named_params<long unsigned int, boost::root_vertex_t, boost::no_property> > > > > > >'
typedef typename property_traits<ColorMap>::value_type ColorValue;
                                                       ^
/usr/include/boost/graph/dijkstra_shortest_paths.hpp:374:38: error: no type named 'value_type' in 'struct boost::property_traits<boost::bgl_named_params<boost::detail::_project2nd<double, double>, boost::distance_combine_t, boost::bgl_named_params<std::less<double>, boost::distance_compare_t, boost::bgl_named_params<boost::iterator_property_map<__gnu_cxx::__normal_iterator<long unsigned int*, std::vector<long unsigned int> >, boost::typed_identity_property_map<long unsigned int>, long unsigned int, long unsigned int&>, boost::vertex_predecessor_t, boost::bgl_named_params<EdgeWeightMap<double>, boost::edge_weight_t, boost::bgl_named_params<boost::typed_identity_property_map<long unsigned int>, boost::vertex_index_t, boost::bgl_named_params<long unsigned int, boost::root_vertex_t, boost::no_property> > > > > > >'
typedef color_traits<ColorValue> Color;
                                 ^

但是,我不明白如何从我所在的位置修复ColorMap的特征,自己创建颜色属性图没有任何好处。

我用于创建隐式图形并在其上运行tsp_metric_approx的代码如下。 我很抱歉它的长度,我希望它很简单。 它的作用是设置一个类CompleteGraph,有一个模板参数F指定distance函数的返回类型。 这个类有必要的迭代器来成为VertexListGraphIncidenceGraph,以便tsp_metric_approx可以在它上运行。

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/metric_tsp_approx.hpp>
using namespace boost;
typedef std::size_t VertexDescriptor;
typedef std::pair<VertexDescriptor, VertexDescriptor> EdgeDescriptor;
class VertexIterator : public boost::iterator_facade<VertexIterator, VertexDescriptor const, boost::bidirectional_traversal_tag>
{
    public:
        //! Default constructor
        VertexIterator() : pos_(0) {}
        //! Constructor setting the position
        explicit VertexIterator(VertexDescriptor pos) : pos_(pos) {}
        //! Dereference the iterator
        VertexDescriptor const& dereference() const { return pos_; }
        //! Check for equality
        bool equal(VertexIterator const& other) const { return pos_ == other.pos_; }
        //! Increment
        void increment() { ++pos_; }
        //! Decrement
        void decrement() { --pos_; }
    private:
        //! Grant access to boost::iterator_facade
        friend class boost::iterator_core_access;
        //! The current position
        VertexDescriptor pos_ = 0;
};
class OutEdgeIterator : public boost::iterator_facade<OutEdgeIterator, EdgeDescriptor const, boost::bidirectional_traversal_tag>
{
    public:
        //! Constructor setting the source vertex
        explicit OutEdgeIterator(VertexDescriptor source) { const std::size_t target = source == 0 ? 1 : 0; pos_ = EdgeDescriptor(source, target); }
        //! Constructor setting the source vertex and the target
        explicit OutEdgeIterator(VertexDescriptor source, VertexDescriptor target) : pos_(source, target) {}
        //! Dereference the iterator
        EdgeDescriptor const& dereference() const { return pos_; }
        //! Check for equality
        bool equal(OutEdgeIterator const& other) const { return pos_ == other.pos_; }
        //! Increment
        void increment() { ++pos_.second; if(pos_.first == pos_.second) { ++pos_.second; } }
        //! Decrement
        void decrement() { --pos_.second; if(pos_.first == pos_.second) { --pos_.second; } }
    private:
        //! Grant access to boost::iterator_facade
        friend class boost::iterator_core_access;
        //! The current edge
        EdgeDescriptor pos_ = EdgeDescriptor(0, 1);
};
//! Class representing a complete graph
/*!
 * This class works as a complete graph.
 * It defines a distance property map between any two points by calling the passed distance function.
 * tparam F The return type of the distance function
 */
template<typename F>
class CompleteGraph
{
    public:
        typedef VertexDescriptor vertex_descriptor;
        typedef EdgeDescriptor edge_descriptor;
        typedef void adjacency_iterator;
        typedef OutEdgeIterator out_edge_iterator;
        typedef void in_edge_iterator;
        typedef void edge_iterator;
        typedef VertexIterator vertex_iterator;
        typedef std::size_t degree_size_type;
        typedef std::size_t vertices_size_type;
        typedef std::size_t edges_size_type;
        typedef undirected_tag directed_category;
        typedef disallow_parallel_edge_tag edge_parallel_category;
        typedef vertex_list_graph_tag traversal_category;
        //! Delete default constructor
        CompleteGraph() = delete;
        //! Constructor from a given size
        /*!
         * If no distance is specified, we default to a constant function returning F(1)
         */
        explicit CompleteGraph(std::size_t size) : size_(size), distance_(returnOne) {}
        //! Constructor from a given size and a distance function of type F
        /*!
         * The constructed graph will have size many vertices.
         * Its distance map will be of the following form: The distance between points i and j is distance(i, j).
         * param[in] size The size the graph should have
         * param[in] distance Binary function taking std::size_t arguments and returning the distance between two points
         */
        explicit CompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) : size_(size), distance_(distance) {}
        //! Access to size_
        std::size_t size() const { return size_; }
        //! Access to distance_
        std::function<F(std::size_t, std::size_t)> const& distance() const { return distance_; }
    private:
        //! The size of the graph
        std::size_t size_;
        //! The distance function used to find the distance between point i and point j
        std::function<F(std::size_t, std::size_t)> const& distance_;
        //! Distance function that just returns F(1)
        std::function<F(std::size_t, std::size_t)> returnOne = [] (std::size_t, std::size_t) { return F(1); };
};
//! Weigth map for all edges
template<typename F>
class EdgeWeightMap
{
    public:
        typedef F value_type;
        typedef F reference_type;
        typedef reference_type reference;
        typedef EdgeDescriptor key_type;
        typedef readable_property_map_tag category;
        //! Constructor from a distance function
        explicit EdgeWeightMap(std::function<F(std::size_t, std::size_t)> const& distance) : distance_(distance) {}
        //! Operator to dereference the property map
        value_type operator[](key_type key) const { return distance_(key.first, key.second); }
        //! Get function
        friend inline value_type get(EdgeWeightMap<F> const& edgeWeightMap, EdgeWeightMap<F>::key_type const& key) { return edgeWeightMap[key]; }
    private:
        //! The distance function
        std::function<F(std::size_t, std::size_t)> const& distance_;
};
//! Return the number of vertices of a CompleteGraph
template<typename F>
std::size_t num_vertices(CompleteGraph<F> const& g) { return g.size(); }
//! Return a pair allowing iteration over all vertices
template<typename F>
std::pair<VertexIterator, VertexIterator> vertices(CompleteGraph<F> const& g) { return std::make_pair(VertexIterator(0), VertexIterator(g.size())); }
//! Return a pair allowing iteration over all outgoing edges of a vertex
template<typename F>
std::pair<OutEdgeIterator, OutEdgeIterator> out_edges(VertexDescriptor s, CompleteGraph<F> const& g) { return std::make_pair(OutEdgeIterator(s), OutEdgeIterator(s, g.size())); }
//! Return the out-degree which is constant size - 1 for all vertices
template<typename F>
std::size_t out_degree(VertexDescriptor, CompleteGraph<F> const& g) { return g.size() - 1; }
//! Return the source of an edge
template<typename F>
VertexDescriptor source(EdgeDescriptor e, CompleteGraph<F> const&) { return e.first; }
//! Return the target of an edge
template<typename F>
VertexDescriptor target(EdgeDescriptor e, CompleteGraph<F> const&) { return e.second; }
//! Return the index map
template<typename F>
identity_property_map get(vertex_index_t, CompleteGraph<F> const&) { return identity_property_map(); }
//! Return the distance map
template<typename F>
EdgeWeightMap<F> get(edge_weight_t, CompleteGraph<F> const& g) { return EdgeWeightMap<F>(g.distance()); }
//! Wrapper function for automatic template parameter
template<typename F>
CompleteGraph<F> makeCompleteGraph(std::size_t size, std::function<F(std::size_t, std::size_t)> const& distance) { return CompleteGraph<F>(size, distance); }
//! Compute a metric TSP solution through the points supplied
/*!
 * This function finds a solution through n many points whose pairwise distance is given by a function argument.
 * The supplied distance function needs to satisfy the triangle inequality and must be symmetric.
 * tparam F The type of the return value of distance
 * param[in] size The number of points through which the TSP tour should be found
 * param[in] start The index of the point at which to start
 * param[in] distance A function taking two std::size_t's and returning the distance between point i and point j
 * return A vector representing the TSP tour
 */
template<typename F>
std::vector<std::size_t> computeTspTour(std::size_t size, std::size_t start, std::function<F(std::size_t, std::size_t)> const& distance)
{
    std::vector<std::size_t> tour;
    const auto completeGraph = makeCompleteGraph(size, distance);
    metric_tsp_approx_tour_from_vertex(completeGraph, start, std::back_inserter(tour));
    return tour;
}
int main()
{
    typedef std::complex<double> Point;
    const std::vector<Point> points{{.0, .0}, {1.0, 2.0}, {1.0, 5.0}, {2.5, 9.2}, {-100.2, 24.1}, {.1, 10.0}};
    const std::function<double(std::size_t, std::size_t)> distance = [&points] (std::size_t i, std::size_t j) { return std::abs(points[i] - points[j]); };
    const auto tour = computeTspTour(points.size(), 0, distance);
    std::cout << "Found TSP tour:n";
    std::copy(tour.cbegin(), tour.cend(), std::ostream_iterator<char>(std::cout, " "));
    return EXIT_SUCCESS;
}

如果有人有一个更短或根本不避免创建任何图形的替代建议,我也很高兴,一个完整的图形除了顶点的数量之外并没有真正携带任何信息。

DFS和TSP算法要求图形既是"顶点列表"又是"发生率图"(即可以访问顶点邻居的图)。

你的图表必须有类似的东西

 struct traversal_category
        : public virtual boost::vertex_list_graph_tag
        , public virtual boost::adjacency_graph_tag
        , public virtual boost::incidence_graph_tag
    {
    };
     typedef typename boost::adjacency_iterator_generator<CompleteGraph<F>, vertex_descriptor, out_edge_iterator>::type adjacency_iterator;

而不是

 typedef vertex_list_graph_tag traversal_category;
 typedef void adjacency_iterator;

通过这些更改加上一些外观更改,您的代码可以通过编译。

顶点索引图是可选的,Boost将使用VertexMap和ColorMap包装您的代码,可能基于unordered_map。它的效率会低于"标识"或类似的自定义映射,但会起作用。

祝你好运!

自定义"完整"图的代码似乎没问题。

DFS需要的关键组件是"顶点索引映射":本质上是vertex_descriptor和int之间的一对一对应关系,使得每个顶点映射到区间[0,num_vertices(g))中的一个数字。对于"标准"图,这种映射是已知的,DFS使用一些元编程来推断适当的ColorMap的类型。

在您的情况下,vertex_descriptor是正确间隔内的整数,映射是"相同的映射"。您只需使用类似于以下内容的代码来表达它:

namespace boost{ 
    template<class F>
    struct property_map< CompleteGraph<F>, vertex_index_t >
    {
        typedef identity_property_map type;
        //or more fancier 
        //typedef CompleteGraph<F> graph_t;
        //typedef typed_identity_property_map<typename graph_t::vertex_descriptor> type;
        typedef type const_type;
    };
    //then you define a "get" function:
    template<class F>
    identity_property_map
      get(vertex_index_t, const CompleteGraph<F>& /*g -- not used */) 
    {
       return identity_property_map();
    }
} //namespace boost

应该够了。如果某些算法需要其他"property_maps"作为您的图形类型,则可以以类似的方式定义它们。

祝你好运!