多个类型的对象的集合

Collection of objects of more than one type

本文关键字:对象 集合 类型      更新时间:2023-10-16

有什么不可怕的方法来拥有多个类型的对象集合吗?我非常乐意从共同的基础派生每种类型。我需要合理的语义,以便可以复制、分配集合等。

显然,我不能只使用基类的向量或列表。 对象将被切片,复制根本不起作用。使用向量或指针列表或智能指针是有效的,但你没有得到理智的复制语义。

要获得理智的复制语义,您需要使用类似 Boost 的 ptr_vector .但这需要一个痛苦且容易出错的基础设施。从本质上讲,您不能只从基类派生一个新类,因为如果它进入集合,它将无法正确复制。

这似乎是一件很常见的事情,我知道的所有解决方案都非常糟糕。似乎C++从根本上缺少一种创建与给定实例相同的对象的新实例的方法——即使该类型具有复制构造函数。创建 cloneduplicate 函数需要在每个派生类中仔细重载。如果在创建从基派生的新类(或从该基派生的任何其他类(时未能做到这一点 - boom,则您的集合中断。

真的没有更好的办法吗?

我认为

您可以使用std::vector<boost::any>来完成大部分工作。

#include "boost/any.hpp"
#include <vector>
#include <iostream>
//Simple class so we can see what's going on
class MM {
  public:
    MM()               { std::cout<<"Create @ "<<this<<std::endl; }
    MM( const MM & o ) { std::cout<<"Copy "<<&o << " -> "<<this<<std::endl; }
    ~MM()              { std::cout<<"Destroy @ "<<this<<std::endl; }
};
int main()
{
  //Fill a vector with some stuff
  std::vector<boost::any> v;
  v.push_back(0);
  v.push_back(0);
  v.push_back(0);
  v.push_back(0);
  //Overwrite one entry with one of our objects.
  v[0] = MM();
  std::cout<<"Copying the vector"<<std::endl;
  std::vector<boost::any> w;
  w = v;
  std::cout<<"Done"<<std::endl;
}

为此我得到了输出:

Create @ 0xbffff6ae
Copy 0xbffff6ae -> 0x100154
Destroy @ 0xbffff6ae
Copying the vector
Copy 0x100154 -> 0x100194
Done
Destroy @ 0x100194
Destroy @ 0x100154

这就是我期望看到的。

编辑:

根据你的要求,能够将成员视为一些常见的基本类型,你需要一些与boost::any非常相似的东西,谢天谢地,这是一个相对简单的类。

template<typename BASE>
class any_with_base
{
    // ... Members as for boost::any
    class placeholder
    {
        virtual BASE * as_base() = 0;
        //Other members as in boost::any::placeholder
    };
    template<typename ValueType>
    class holder : public placeholder
    {
        virtual BASE * as_base() { return (BASE*)&held; }
        //Other members as in boost::any::holder<T>
    };
    BASE* as_base() { return content?content->as_base():0; }
}

现在你应该能够做到这一点:

vector< any_with_base<Base> > v;
v.push_back( DerivedA() );
v.push_back( DerivedB() );
v[0].as_base()->base_fn();
v[1].as_base()->base_fn();
any_cast<DerivedA>(v[0])->only_in_a();

我实际上不喜欢any_cast的语法,并会利用这个机会添加一个"as"成员函数......这样我就可以将最后一行写成:

v[0].as<DerivedA>()->only_in_a();

好的,为了跟进我的评论,有一种方法可以在不使用 boost::any 的情况下做到这一点,在大多数情况下应该提供卓越的性能,但不可否认的是,它涉及更多。 我的解决方案结合了两个想法:使用省略其内容类型的持有者类,以及轻量级自定义 RTTI。 我们为持有者类提供有意义的复制和赋值语义,并使用持有者的容器来管理对象的集合。 必要时,我们使用轻量级RTTI来发现对象的真实类型。 这里有一些代码来演示我的建议:

#include <vector>
#include <cassert>
#include <iostream>
#include <boost/cast.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/static_assert.hpp>
/// This template makes it possible to enforce the invariant that every type in a
/// hierarchy defines the id( ) function, which is necessary for our RTTI.  Using
/// a static assertion, we can force a compile error if a type doesn't provide id( ).
template< typename T >
struct provides_id {
  typedef char one;
  typedef long two;
  template< typename U, std::string const &(U::*)( ) const = &U::id >
  struct id_detector { };
  template< typename U > static one test( id_detector< U > * );
  template< typename U > static two test( ... );
  enum { value = sizeof(test<T>(0)) == sizeof(one) };
};
/// Base class for the holder.  It elides the true type of the object that it holds,
/// providing access only through the base class interface.  Since there is only one
/// derived type, there is no risk of forgetting to define the clone() function.
template< typename T >
struct holder_impl_base {
  virtual ~holder_impl_base( ) { }
  virtual T       *as_base( )       = 0;
  virtual T const *as_base( ) const = 0;
  virtual holder_impl_base *clone( ) const = 0;
};
/// The one and only implementation of the holder_impl_base interface.  It stores
/// a derived type instance and provides access to it through the base class interface.
/// Note the use of static assert to force the derived type to define the id( )
/// function that we use to recover the instance's true type.
template< typename T, typename U >
struct holder_impl : public holder_impl_base< T > {
  BOOST_STATIC_ASSERT(( provides_id< U >::value ));
  holder_impl( U const &p_data )
    : m_data( p_data )
  { }
  virtual holder_impl *clone( ) const {
    return new holder_impl( *this );
  }
  virtual T *as_base( ) {
    return &m_data;
  }
  virtual T const *as_base( ) const {
    return &m_data;
  }
private:
  U m_data;
};
/// The holder that we actually use in our code.  It can be constructed from an instance
/// of any type that derives from T and it uses a holder_impl to elide the type of the
/// instance.  It provides meaningful copy and assignment semantics that we are looking
/// for.
template< typename T >
struct holder {
  template< typename U >
  holder( U const &p_data )
    : m_impl( new holder_impl< T, U >( p_data ))
  { }
  holder( holder const &p_other )
    : m_impl( p_other.m_impl -> clone( ))
  { }
  template< typename U >
  holder &operator = ( U const &p_data ) {
    m_impl.reset( new holder_impl< T, U >( p_data ));
    return *this;
  }
  holder &operator = ( holder const &p_other ) {
    if( this != &p_other ) {
      m_impl.reset( p_other.m_impl -> clone( ));
    }
    return *this;
  }
  T *as_base( ) {
    return m_impl -> as_base( );
  }
  T const *as_base( ) const {
    return m_impl -> as_base( );
  }
  /// The next two functions are what we use to cast elements to their "true" types.
  /// They use our custom RTTI (which is guaranteed to be defined due to our static
  /// assertion) to check if the "true" type of the object in a holder is the same as
  /// as the template argument.  If so, they return a pointer to the object; otherwise
  /// they return NULL.
  template< typename U >
  U *as( ) {
    T *base = as_base( );
    if( base -> id( ) == U::static_id( )) {
      return boost::polymorphic_downcast< U * >( base );
    }
    return 0;
  }
  template< typename U >
  U const *as( ) const {
    T *base = as_base( );
    if( base -> id( ) == U::static_id( )) {
      return boost::polymorphic_downcast< U const * >( base );
    }
    return 0;
  }
private:
  boost::scoped_ptr< holder_impl_base< T > > m_impl;
};
/// A base type and a couple derived types to demonstrate the technique.
struct base {
  virtual ~base( )
  { }
  virtual std::string const &id( ) const = 0;
};
struct derived1 : public base { 
  std::string const &id( ) const {
    return c_id;
  }
  static std::string const &static_id( ) {
    return c_id;
  }
private:
  static std::string const c_id;
};
std::string const derived1::c_id( "derived1" );
struct derived2 : public base {
  std::string const &id( ) const {
    return c_id;
  }
  static std::string const &static_id( ) {
    return c_id;
  }
private:
  static std::string const c_id;
};
std::string const derived2::c_id( "derived2" );
/// A program to demonstrate that the technique works as advertised.
int main( ) {
  std::vector< holder< base > > vector1;
  vector1.push_back( derived1( ));
  vector1.push_back( derived2( ));
  std::vector< holder< base > > vector2 = vector1;
  /// We see that we have true copies!
  assert( vector1[0].as_base( ) != vector2[0].as_base( ));
  assert( vector1[1].as_base( ) != vector2[0].as_base( ));
  /// Easy assignment of container elements to new instances!
  vector2[0] = derived2( );
  vector2[1] = derived1( );
  // Recovery of the "true" types!
  std::vector< holder< base > >::iterator l_itr = vector1.begin( );
  std::vector< holder< base > >::iterator l_end = vector1.end  ( );
  for( ; l_itr != l_end; ++l_itr ) {
    if( derived1 *ptr = l_itr -> as< derived1 >( )) {
      std::cout << ptr -> static_id( ) << std::endl;
    }
    else if( derived2 *ptr = l_itr -> as< derived2 >( )) {
      std::cout << ptr -> static_id( ) << std::endl;
    }
  }
}

这是输出:

derived1
derived2